TOPICS
Search

Joint Distribution Function


A joint distribution function is a distribution function D(x,y) in two variables defined by

D(x,y) = P(X<=x,Y<=y)
(1)
D_x(x) = lim_(y->infty)D(x,y)
(2)
D_y(y) = lim_(x->infty)D(x,y)
(3)

so that the joint probability function satisfies

D(x,y) = P{X in (-infty,x],Y in (-infty,y]}
(6)

Two random variables X and Y are independent iff

D(x,y)=D_x(x)D_y(y)
(9)

for all x and y and

A multiple distribution function is of the form

D(x_1,...,x_n)=P(X_1<=x_1,...,X_n<=x_n).
(11)

See also

Distribution Function

Explore with Wolfram|Alpha

WolframAlpha

References

Grimmett, G. and Stirzaker, D. Probability and Random Processes, 2nd ed. New York: Oxford University Press, 1992.

Referenced on Wolfram|Alpha

Joint Distribution Function

Cite this as:

Weisstein, Eric W. "Joint Distribution Function." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/JointDistributionFunction.html

Subject classifications

AltStyle によって変換されたページ (->オリジナル) /