Conjunction
A product of ANDs, denoted
The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions
| A_lambda= union _(i in lambda)A_i, |
where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186).
A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30).
The Wolfram Language command Conjunction [expr, {a1, a2, ...}] gives the conjunction of expr over all choices of the Boolean variables a_i.
See also
AND, Boolean Algebra, Boolean Function, Complete Product, Disjunction, NOT, ORExplore with Wolfram|Alpha
WolframAlpha
More things to try:
References
Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, p. 186, 1974.Mendelson, E. Introduction to Mathematical Logic, 4th ed. London: Chapman & Hall, 1997.Referenced on Wolfram|Alpha
ConjunctionCite this as:
Weisstein, Eric W. "Conjunction." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/Conjunction.html