On Gravity's role in Quantum State Reduction
- Published:
- Volume 28, pages 581–600, (1996)
- Cite this article
-
5139 Accesses
-
1424 Citations
-
150 Altmetric
-
19 Mentions
Abstract
The stability of a quantum superposition of two different stationary mass distributions is examined, where the perturbing effect of each distribution on the space-time structure is taken into account, in accordance with the principles of general relativity. It is argued that the definition of the time-translation operator for the superposed space-times involves an inherent ill-definedness, leading to an essential uncertainty in the energy of the superposed state which, in the Newtonian limit, is proportional to the gravitational self-energyE Δ of the difference between the two mass distributions. This is consistent with a suggested finite lifetime of the order of ħ/E Δ for the superposed state, in agreement with a certain proposal made by the author for a gravitationally induced spontaneous quantum state reduction, and with closely related earlier suggestions by Diósi and by Ghirardiet al.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Anandan, J. (1994).Gen. Rel. Grav. 26, 125.
Anandan, J. (1995). "Gravitational phase operator and cosmic strings". To appear inPhys. Rev. D.
Bell, J. S. (1990).Physics World 3, 33.
Bialynicki-Birula, I., and Mycielski, J. (1976).Ann. Phys. (NY) 100, 62.
Bohm, D. (1952).Phys. Rev. 85, 166.
Bohm, D., and Hiley, B. (1994).The Undivided Universe (Routledge, London).
Cartan, É. (1923,1924). "Sur les variétés à connexion affine et la théorie de la relativité generalisée",Ann. École Norm. Sup. 40, 325,41, 1.
Christian, J. (1995). "Definite events in Newton-Cartan quantum gravity" Oxford University preprint.
de Broglie, I. (1956).Tentative d'Interpretation Causale et Nonlineaire de la Mechanique Ondulatoire (Gauthier-Villars, Paris).
DeWitt, B. S., and Graham, R. D. (eds.) (1973).The Many Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton).
Diósi, L. (1989).Phys. Rev. A 40, 1165.
Ehlers, J. (1991). InClassical Mechanics and Relativity: Relationship and Consistency (Int. Conf. in memory of Carlo Cataneo, Elba 1989), G. Ferrarese, ed. (Monographs and Textbooks in Physical Science, Lecture Notes 20, Bibliopolis, Naples).
Everett, H. (1957).Rev. Mod. Phys. 29, 454.
Friedrichs, K. (1927).Math. Ann. 98, 566.
Gell-Mann, M., and Hartle, J. B. (1993).Phys. Rev. D 47, 3345.
Ghirardi, G. C., Rimini, A. and Weber, T. (1986).Phys. Rev. D 34, 470.
Ghirardi, G. C., Grassi, R., and Rimini, A. (1990).Phys. Rev. A 42, 1057.
Griffiths, R. (1984).J. Stat. Phys. 36, 219.
Haag, R. (1992).Local Quantum Physics: Fields, Particles, Algebras (Springer-Verlag, Berlin).
Károlyházy, F. (1966).Nuovo Cimento A 42, 390.
Károlyházy, F. (1974).Magyar Fizikai Polyoirat 12, 24.
Károlyházy, F., Frenkel, A., and Lukács, B. (1986). InQuantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Oxford University Press, Oxford), p. 109.
Kibble, T. W. B. (1981). InQuantum Gravity 2: a Second Oxford Symposium, C. J. Isham, R. Penrose and D. W. Sciama, eds. (Oxford University Press, Oxford), p.63.
Komar, A. B. (1969).Int. J. Theor. Phys. 2, 157.
Omnès, R. (1992).Rev. Mod. Phys. 64, 339.
Page, D. N., and Geilker, C. D. (1981).Phys. Rev. Lett. 47, 979.
Pearle, P. (1985). InQuantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Oxford University Press, Oxford), p.84.
Pearle, P. (1989).Phys. Rev. A 39, 2277.
Pearle, P., and Squires, E. J. (1995). "Gravity, energy conservation and parameter values in collapse models". Durham University preprint DTP/95/13.
Penrose, R. (1981). InQuantum Gravity 2: A Second Oxford Symposium, C. J. Isham, R. Penrose and D. W. Sciama, eds. (Oxford University Press, Oxford), p.244.
Penrose, R. (1986). InQuantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Oxford University Press, Oxford), p.129.
Penrose, R. (1987). In300 Years of Gravity, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge), p. 17.
Penrose, R. (1989).The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics (Oxford University Press, Oxford).
Penrose, R. (1993). InGeneral Relativity and Gravitation 13. Part 1: Plenary Lectures, R. J. Gleiser, C. N. Kozameh and O. M. Moreschi, eds. (IOPP, Bristol/Philadelphia), p. 179.
Penrose, R. (1994). InFundamental Aspects of Quantum Theory, J. Anandan and J. L. Safko, eds. (World Scientific, Singapore), p.238.
Penrose, R. (1994).Shadows of the Mind; An Approach to the Missing Science of Consciousness (Oxford University Press, Oxford).
Percival, I. C. (1995).Proc. R. Soc. Lond. A 451, 503.
Squires, E. (1990).Phys. Lett. A 145, 67.
Squires, E. (1992).Found. Phys. Lett. 5, 279.
Trautman, A. (1965). InLectures on General Relativity (Brandeis 1964 Summer Inst. on Theoretical Physics), vol. I, by A. Trautman, F. A. E. Pirani and H. Bondi (Prentice-Hall, Englewood Cliffs, NJ), p.7.
Weinberg, S. (1989).Phys. Rev. Lett. 62, 485.
Wigner, E. P. (1961). InThe Scientist Speculates, I. J. Good, ed. (Heinemann, London); reprinted in E. Wigner (1967).Symmetries and Reflections (Indiana University Press, Bloomington) and in 1983 in QuantumTheory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton).
Zurek, W. H. (1991).Physics Today 44, 36.
Rights and permissions
About this article
Cite this article
Penrose, R. On Gravity's role in Quantum State Reduction. Gen Relat Gravit 28, 581–600 (1996). https://doi.org/10.1007/BF02105068
Received:
Revised:
Issue date:
DOI: https://doi.org/10.1007/BF02105068
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative