Skip to main content
Log in

Image Matching Using Generalized Scale-Space Interest Points

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7893))

Abstract

The performance of matching and object recognition methods based on interest points depends on both the properties of the underlying interest points and the associated image descriptors. This paper demonstrates the advantages of using generalized scale-space interest point detectors when computing image descriptors for image-based matching. These generalized scale-space interest points are based on linking of image features over scale and scale selection by weighted averaging along feature trajectories over scale and allow for a higher ratio of correct matches and a lower ratio of false matches compared to previously known interest point detectors within the same class. Specifically, it is shown how a significant increase in matching performance can be obtained in relation to the underlying interest point detectors in the SIFT and the SURF operators. We propose that these generalized scale-space interest points when accompanied by associated scale-invariant image descriptors should allow for better performance of interest point based methods for image-based matching, object recognition and related vision tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from 17,985円 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comp. Vis. 60, 91–110 (2004)

  2. Bay, H., Ess, A., Tuytelaars, T.: van Gool: Speeded up robust features (SURF). CVIU 110, 346–359 (2008)

  3. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comp. Vis. 30, 77–116 (1998)

  4. Witkin, A.P.: Scale-space filtering. In: 8th IJCAI, pp. 1019–1022 (1983)

  5. Koenderink, J.J.: The structure of images. Biol. Cyb. 50, 363–370 (1984)

  6. Koenderink, J.J., van Doorn, A.J.: Generic neighborhood operators. IEEE-PAMI 14, 597–605 (1992)

  7. Lindeberg, T.: Scale-Space Theory in Computer Vision. Springer (1994)

  8. Florack, L.M.J.: Image Structure. Springer (1997)

  9. ter Haar Romeny, B.: Front-End Vision and Multi-Scale Image Analysis. Springer (2003)

  10. Lindeberg, T.: Scale-space. In: Wah, B. (ed.) Encyclopedia of Computer Science and Engineering, pp. 2495–2504. Wiley (2008)

  11. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–152 (1988)

  12. Lindeberg, T.: Generalized scale-space interest points: Scale-space primal sketch for differential descriptors (2010) (under revision for International Journal of Computer Vision, original version submitted in June 2010)

  13. Lindeberg, T.: Scale selection properties of generalized scale-space interest point detectors. J. Math. Im. Vis (September 2012), doi:10.1007/s10851-012-0378-3

  14. Shi, J., Tomasi, C.: Good features to track. In: CVPR, pp. 593–600 (1994)

  15. Lindeberg, T.: On automatic selection of temporal scales in time-casual scale-space. In: Sommer, G. (ed.) AFPAC 1997. LNCS, vol. 1315, pp. 94–113. Springer, Heidelberg (1997)

  16. Benhimane, S., Malis, E.: Real-time image-based tracking of planes using efficient second-order minimization. In: Intelligent Robots and Systems, pp. 943–948 (2004)

  17. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 1st edn. Cambridge University Press (2000)

  18. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., van Gool, L.: A comparison of affine region detectors. Int. J. Comp. Vis. 65, 43–72 (2005)

  19. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comp. Vis. 60, 63–86 (2004)

Download references

Author information

Authors and Affiliations

  1. School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden

    Tony Lindeberg

Authors
  1. Tony Lindeberg

Editor information

Editors and Affiliations

  1. Fraunhofer Gesellschaft, Institut für Graphische Datenverarbeitung, Fraunhoferstraße 5, 64283, Darmstadt, Germany

    Arjan Kuijper

  2. Institute for Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010, Graz, Austria

    Kristian Bredies

  3. Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, 8010, Graz, Austria

    Thomas Pock & Horst Bischof &

About this paper

Cite this paper

Lindeberg, T. (2013). Image Matching Using Generalized Scale-Space Interest Points. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38267-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38266-6

  • Online ISBN: 978-3-642-38267-3

  • eBook Packages: Computer Science Computer Science (R0)

Keywords

Publish with us

AltStyle によって変換されたページ (->オリジナル) /