Skip to main content
Log in

ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10609))

Included in the following conference series:

Abstract

This paper describes ANN-Benchmarks, a tool for evaluating the performance of in-memory approximate nearest neighbor algorithms. It provides a standard interface for measuring the performance and quality achieved by nearest neighbor algorithms on different standard data sets. It supports several different ways of integrating k-NN algorithms, and its configuration system automatically tests a range of parameter settings for each algorithm. Algorithms are compared with respect to many different (approximate) quality measures, and adding more is easy and fast; the included plotting front-ends can visualise these as images, plots, and websites with interactive plots. ANN-Benchmarks aims to provide a constantly updated overview of the current state of the art of k-NN algorithms. In the short term, this overview allows users to choose the correct k-NN algorithm and parameters for their similarity search task; in the longer term, algorithm designers will be able to use this overview to test and refine automatic parameter tuning. The paper gives an overview of the system, evaluates the results of the benchmark, and points out directions for future work. Interestingly, very different approaches to k-NN search yield comparable quality-performance trade-offs. The system is available at http://sss.projects.itu.dk/ann-benchmarks/.

The research of the first and third authors has received funding from the European Research Council under the European Union’s 7th Framework Programme (FP7/2007-2013)/ERC grant agreement no. 614331.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from 17,985円 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Ahle, T.D., Aumüller, M., Pagh, R.: Parameter-free locality sensitive hashing for spherical range reporting. In: SODA 2017, pp. 239–256

  2. Alman, J., Williams, R.: Probabilistic polynomials and hamming nearest neighbors. In: FOCS 2015, pp. 136–150

  3. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I.P., Schmidt, L.: Practical and optimal LSH for angular distance. In: NIPS 2015, pp. 1225–1233. https://falconn-lib.org/

  4. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

  5. Bernhardsson, E.: Annoy. https://github.com/spotify/annoy

  6. Boytsov, L., Naidan, B.: Engineering efficient and effective non-metric space library. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 280–293. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41062-8_28

  7. Boytsov, L., Novak, D., Malkov, Y., Nyberg, E.: Off the beaten path: let’s replace term-based retrieval with k-NN search. In: CIKM 2016, pp. 1099–1108

  8. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: VLDB 1997, pp. 426–435 (1997)

  9. Curtin, R.R., Cline, J.R., Slagle, N.P., March, W.B., Ram, P., Mehta, N.A., Gray, A.G.: MLPACK: a scalable C++ machine learning library. J. Mach. Learn. Res. 14, 801–805 (2013)

  10. Dong, W.: KGraph. https://github.com/aaalgo/kgraph

  11. Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling LSH for performance tuning. In: CIKM 2008, pp. 669–678. ACM. http://lshkit.sourceforge.net/

  12. Edel, M., Soni, A., Curtin, R.R.: An automatic benchmarking system. In: NIPS 2014 Workshop on Software Engineering for Machine Learning (2014)

  13. Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.E.: Spherical hashing: binary code embedding with hyperspheres. IEEE TPAMI 37(11), 2304–2316 (2015)

  14. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: STOC 1998, pp. 604–613

  15. Johnson, W.B., Lindenstrauss, J., Schechtman, G.: Extensions of Lipschitz maps into Banach spaces. Isr. J. Math. 54(2), 129–138 (1986)

  16. Kriegel, H., Schubert, E., Zimek, A.: The (black) art of runtime evaluation: are we comparing algorithms or implementations? Knowl. Inf. Syst. 52(2), 341–378 (2017)

  17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

  18. Li, W., Zhang, Y., Sun, Y., Wang, W., Zhang, W., Lin, X.: Approximate nearest neighbor search on high dimensional data - experiments, analyses, and improvement (v1.0). CoRR abs/1610.02455 (2016). http://arxiv.org/abs/1610.02455

  19. Lyst Engineering: Rpforest. https://github.com/lyst/rpforest

  20. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs. ArXiv e-prints, March 2016

  21. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest neighbor algorithm based on navigable small world graphs. Inf. Syst. 45, 61–68 (2014)

  22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS 2013, pp. 3111–3119

  23. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISSAPP 2009, pp. 331–340. INSTICC Press

  24. Norouzi, M., Punjani, A., Fleet, D.J.: Fast search in hamming space with multi-index hashing. In: CVPR 2012, pp. 3108–3115. IEEE

  25. Pham, N.: Hybrid LSH: faster near neighbors reporting in high-dimensional space. In: EDBT 2017, pp. 454–457

  26. van Rijn, J.N., Bischl, B., Torgo, L., Gao, B., Umaashankar, V., Fischer, S., Winter, P., Wiswedel, B., Berthold, M.R., Vanschoren, J.: OpenML: a collaborative science platform. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS, vol. 8190, pp. 645–649. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40994-3_46

  27. Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: a survey. CoRR abs/1408.2927 (2014). http://arxiv.org/abs/1408.2927

  28. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348(2–3), 357–365 (2005)

  29. Zezula, P., Savino, P., Amato, G., Rabitti, F.: Approximate similarity retrieval with M-Trees. VLDB J. 7(4), 275–293 (1998)

Download references

Acknowledgements

We thank the anonymous reviewers for their careful comments that allowed us to improve the paper. The first and third authors thank all members of the algorithm group at ITU Copenhagen for fruitful discussions.

Author information

Authors and Affiliations

  1. IT University of Copenhagen, Copenhagen, Denmark

    Martin Aumüller & Alexander Faithfull

  2. Better, New York, USA

    Erik Bernhardsson

Authors
  1. Martin Aumüller
  2. Erik Bernhardsson
  3. Alexander Faithfull

Corresponding author

Correspondence to Martin Aumüller .

Editor information

Editors and Affiliations

  1. Fraunhofer Institute for Applied Information Technology, Sankt Augustin, Germany

    Christian Beecks

  2. Ludwig-Maximilians-Universität München, Munich, Germany

    Felix Borutta

  3. Ludwig-Maximilians-Universität München, Munich, Germany

    Peer Kröger

  4. Ludwig-Maximilians-Universität München, Munich, Germany

    Thomas Seidl

About this paper

Cite this paper

Aumüller, M., Bernhardsson, E., Faithfull, A. (2017). ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds) Similarity Search and Applications. SISAP 2017. Lecture Notes in Computer Science(), vol 10609. Springer, Cham. https://doi.org/10.1007/978-3-319-68474-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68474-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68473-4

  • Online ISBN: 978-3-319-68474-1

  • eBook Packages: Computer Science Computer Science (R0)

Publish with us

AltStyle によって変換されたページ (->オリジナル) /