Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Banning carbon nanotubes would be scientifically unjustified and damaging to innovation

Nature Nanotechnology volume 15, pages 164–166 (2020)Cite this article

To the Editor — In a recent correspondence, the Swedish non-profit organization ChemSec announced the addition of carbon nanotubes to the SIN (‘Substitute It Now’) list1 . Carbon nanotubes were added as an entire material class that "should be restricted or banned in the EU." We believe that this recommendation confuses researchers and the public as it is based on evidence from a very narrow subset of data. Such a designation will likely hinder innovations that could lead to safe and effective applications of carbon nanotubes. Furthermore, this line of reasoning could damage other fields of science and technology, if applied similarly.

We have worked with carbon nanotubes since the 1990s, a time marked by excitement and confusion about the promises and concerns of nanomaterials2,3 . During this period, broad claims of toxicities were ascribed to carbon nanotubes, which were later found to apply only to a narrow subset of carbon nanotube preparations and/or exposure routes4,5 . Numerous subsequent publications that reported more nuanced results were given much less attention6,7,8 . Importantly, data showing a lack of toxicity are often not published, as they are usually considered ‘negative’ results9 . Unfortunately, we are left with a one-sided story that damages research efforts. The recent report by the advocacy group ChemSec seems to have been confused by these issues.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

References

  1. Hansen, S. F. & Lennquist, A. Nat. Nanotechnol. 15, 3–4 (2020).

    Article CAS Google Scholar

  2. Feder, B. J. New economy; nanotechnology has arrived; a serious opposition is forming. The New York Times (19 August 2002).

  3. Feder, B. As uses grow, tiny materials’ safety is hard to pin down. New York Times (3 November 2003).

  4. Kermanizadeh, A. et al. J. Toxicol. Environ. Health Part B 19, 1–28 (2016).

    Article CAS Google Scholar

  5. Kostarelos, K. The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26, 774–776 (2008).

    Article CAS Google Scholar

  6. Ema, M., Gamo, M. & Honda, K. Regul. Toxicol. Pharmacol. 74, 42–63 (2016).

    Article CAS Google Scholar

  7. Ali-Boucetta, H. et al. Angew. Chem. Int. Ed. 52, 2274–2278 (2013).

    Article CAS Google Scholar

  8. Movia, D., Prina-Mello, A., Bazou, D., Volkov, Y. & Giordani, S. ACS Nano 5, 9278–9290 (2011).

    Article CAS Google Scholar

  9. Krug, H. F. Angew. Chem. Int. Ed. 53, 12304–12319 (2014).

    CAS Google Scholar

  10. Alidori, S. et al. Sci. Transl. Med. 8, 331ra39–331ra39 (2016).

    Article Google Scholar

  11. Yeh, Y.-T. et al. Proc. Natl Acad. Sci. 117, 895–901 (2020).

    Article CAS Google Scholar

  12. Vitale, F., Summerson, S. R., Aazhang, B., Kemere, C. & Pasquali, M. ACS Nano 9, 4465–4474 (2015).

    Article CAS Google Scholar

  13. Castagnola, V. et al. Nanoscale Horiz. 2, 187–198 (2017).

    Article CAS Google Scholar

  14. Rao, R. et al. ACS Nano 12, 11756–11784 (2018).

    Article CAS Google Scholar

  15. Segawa, Y., Ito, H. & Itami, K. Nat. Rev. Mater. 1, 15002 (2016).

    Article CAS Google Scholar

  16. Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. Chem. Rev. 106, 1105–1136 (2006).

    Article CAS Google Scholar

  17. De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Science 339, 535–539 (2013).

    Article Google Scholar

  18. McCauley, M. D. et al. Circ. Arrhythm. Electrophysiol. 12, e007256 (2019).

    Article CAS Google Scholar

  19. Beyene, A. G. et al. Sci. Adv. 5, eaaw3108 (2019).

    Article Google Scholar

  20. Ignatova, T., Chandrasekar, S., Pirbhai, M., Jedlicka, S. S. & Rotkin, S. V. J. Mater. Chem. B 5, 6536–6545 (2017).

    Article CAS Google Scholar

  21. Bai, Y. et al. Nat. Nanotechnol. 13, 589–595 (2018).

    Article CAS Google Scholar

  22. Jena, P. V. et al. ACS Nano 11, 10689–10703 (2017).

    Article CAS Google Scholar

  23. Wong, M. H. et al. Nat. Mater. 16, 264–272 (2017).

    Article CAS Google Scholar

  24. Demirer, G. S. et al. Nat. Nanotechnol. 14, 456–464 (2019).

    Article CAS Google Scholar

  25. Ceppi, L. et al. ACS Nano 13, 5356–5365 (2019).

    Article CAS Google Scholar

  26. Galassi, T. V. et al. Sci. Transl. Med. 10, eaar2680 (2018).

    Article Google Scholar

  27. Gao, Z., Varela, J. A., Groc, L., Lounis, B. & Cognet, L. Biomater. Sci. 4, 230–244 (2016).

    Article CAS Google Scholar

  28. Pescatori, M. et al. Biomaterials 34, 4395–4403 (2013).

    Article CAS Google Scholar

  29. Hong, G., Diao, S., Antaris, A. L. & Dai, H. Chem. Rev. 115, 10816–10906 (2015).

    Article CAS Google Scholar

  30. Alidori, S. et al. PLoS ONE 12, e0183902 (2017).

    Article Google Scholar

  31. Lam, C.-W. Toxicol. Sci. 77, 126–134 (2003).

    Article Google Scholar

  32. Poland, C. A. et al. Nat. Nanotechnol. 3, 423–428 (2008).

    Article CAS Google Scholar

  33. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Nanomaterials and Some Fibres (International Agency for Research on Cancer, 2017).

  34. Grosse, Y. et al. Lancet Oncol. 15, 1427–1428 (2014).

    Article CAS Google Scholar

  35. Marques, M. M. et al. Lancet Oncol. 20, 763–764 (2019).

    Article Google Scholar

  36. Oberdörster, G., Stone, V. & Donaldson, K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 1, 2–25 (2007).

    Article Google Scholar

  37. Phillips, E. et al. Sci. Transl. Med. 6, 260ra149–260ra149 (2014).

    Article Google Scholar

  38. Arami, H., Khandhar, A., Liggitt, D. & Krishnan, K. M. Chem. Soc. Rev. 44, 8576–8607 (2015).

    Article CAS Google Scholar

  39. Nel, A. E. et al. Nat. Mater. 8, 543–557 (2009).

    Article CAS Google Scholar

  40. Faria, M. et al. Nat. Nanotechnol. 13, 777–785 (2018).

    Article CAS Google Scholar

Download references

Acknowledgements

We thank C. P. Horoszko, A. Klausner, M. T. Manzari, J. Richmond and J. Bartlett for helpful discussions and editorial review.

Author information

Authors and Affiliations

  1. Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA

    Daniel A. Heller, Prakrit V. Jena & David A. Scheinberg

  2. Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA

    Daniel A. Heller, David A. Scheinberg & Robert E. Schwartz

  3. Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX, USA

    Matteo Pasquali

  4. Department of Chemistry, Rice University, Houston, TX, USA

    Matteo Pasquali, James M. Tour & R. Bruce Weisman

  5. Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA

    Matteo Pasquali, Junichiro Kono & James M. Tour

  6. Nanomedicine Lab, The University of Manchester, Manchester, UK

    Kostas Kostarelos

  7. Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, Spain

    Kostas Kostarelos

  8. Department of Biomedical Sciences, University of Padua, Padua, Italy

    Lucia G. Delogu

  9. Baker Institute for Public Policy, Rice University, Houston, TX, USA

    Rachel E. Meidl

  10. Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA, USA

    Slava V. Rotkin

  11. Materials Research Institute, The Pennsylvania State University, University Park, PA, USA

    Slava V. Rotkin

  12. Department of Medicine, Weill Cornell Medicine, New York, NY, USA

    David A. Scheinberg

  13. Department of Physics, The Pennsylvania State University, University Park, PA, USA

    Mauricio Terrones

  14. Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA

    YuHuang Wang

  15. CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France

    Alberto Bianco

  16. Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

    Ardemis A. Boghossian

  17. Department of Physics, University of Antwerp, Antwerp, Belgium

    Sofie Cambré & Wim Wenseleers

  18. Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Talence, France

    Laurent Cognet

  19. Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia

    Simon R. Corrie

  20. Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA

    Philip Demokritou

  21. School of Chemical Sciences, Dublin City University, Dublin, Ireland

    Silvia Giordani

  22. Institute of Physical and Theoretical Chemistry, Julius-Maximilians University Würzburg, Würzburg, Germany

    Tobias Hertel

  23. Nanoscience Department, University of North Carolina at Greensboro, Greensboro, NC, USA

    Tetyana Ignatova

  24. Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

    Mohammad F. Islam

  25. Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA

    Nicole M. Iverson

  26. Department of Bioengineering, Lehigh University, Bethlehem, PA, USA

    Anand Jagota

  27. Department of Chemistry, Silesian University of Technology, Gliwice, Poland

    Dawid Janas

  28. Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

    Junichiro Kono

  29. Department of Physics and Astronomy, Rice University, Houston, TX, USA

    Junichiro Kono

  30. Department of Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany

    Sebastian Kruss

  31. Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA

    Markita P. Landry

  32. College of Chemistry and Molecular Engineering, Peking University, Beijing, China

    Yan Li

  33. Département de chimie, Université de Montréal, Montréal, Quebec, Canada

    Richard Martel

  34. Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan

    Shigeo Maruyama

  35. Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA

    Anton V. Naumov

  36. Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Trieste, Italy

    Maurizio Prato

  37. Carbon Bionanotechnology Lab, CIC biomaGUNE, San Sebastián, Spain

    Maurizio Prato

  38. Ikerbasque, Basque Foundation for Science, Bilbao, Spain

    Maurizio Prato

  39. School of Chemistry, University College Dublin, Dublin, Ireland

    Susan J. Quinn

  40. Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA

    Daniel Roxbury

  41. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

    Michael S. Strano

  42. Nanomaterials Research Institute, Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

    Masako Yudasaka

Authors
  1. Daniel A. Heller
  2. Prakrit V. Jena
  3. Matteo Pasquali
  4. Kostas Kostarelos
  5. Lucia G. Delogu
  6. Rachel E. Meidl
  7. Slava V. Rotkin
  8. David A. Scheinberg
  9. Robert E. Schwartz
  10. Mauricio Terrones
  11. YuHuang Wang
  12. Alberto Bianco
  13. Ardemis A. Boghossian
  14. Sofie Cambré
  15. Laurent Cognet
  16. Simon R. Corrie
  17. Philip Demokritou
  18. Silvia Giordani
  19. Tobias Hertel
  20. Tetyana Ignatova
  21. Mohammad F. Islam
  22. Nicole M. Iverson
  23. Anand Jagota
  24. Dawid Janas
  25. Junichiro Kono
  26. Sebastian Kruss
  27. Markita P. Landry
  28. Yan Li
  29. Richard Martel
  30. Shigeo Maruyama
  31. Anton V. Naumov
  32. Maurizio Prato
  33. Susan J. Quinn
  34. Daniel Roxbury
  35. Michael S. Strano
  36. James M. Tour
  37. R. Bruce Weisman
  38. Wim Wenseleers
  39. Masako Yudasaka

Contributions

All authors contributed to the final manuscript and approved of the final version.

Corresponding author

Correspondence to Daniel A. Heller.

About this article

Cite this article

Heller, D.A., Jena, P.V., Pasquali, M. et al. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat. Nanotechnol. 15, 164–166 (2020). https://doi.org/10.1038/s41565-020-0656-y

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-020-0656-y

This article is cited by

Search

Advanced search

Quick links

[画像:Nature Briefing: Translational Research]

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research

AltStyle によって変換されたページ (->オリジナル) /