Last
Updated:
The Mathematics of Origami
© Joseph O'Rourke 2025
Cover
Cambridge University Press
ISBN 978-1-009-68735-5. Publication Dec. 2025.
Animated GIFs
A click on a thumbnail will run an animated GIF in a new browser window/tab. To repeat the animation, refresh the browser window.
All animations were made with Mathematica.
Chapter 4: Flat Folding is Hard
Fig. 4.6
Wire Splitter Gadget (500K)
Fig. 4.15
Triangle Twist Splitter Gadget(1MB)
Chapter 5: Rigid Origami and Degree-4 Vertices
Fig. 5.1
Open Box (1.8MB)
Fig. 5.3
Loop Table (Instagram link)
Fig. 5.10
Miura map fold (1MB)
Fig. 5.12
Miura Tessellation 85deg (1.5MB)
Fig. 5.16
Miura-unit 60deg (700KB)
Fig. 5.22
SquareTwist-unit 1Vertex (1.3MB)
Fig. 5.23
SquareTwist 4Vertices (1.5MB)
Fig. 5.25
SquareTwist Tessellation (2.5MB)
Fig. 5.26
Octahedron Top (1MB)
Chapter 6: Origami Design
Fig. 6.6
Rabbit Ear Molecule (1Mb)
Fig. 7.16
Cube Flattening (1.5Mb)
Chapter 9: Self-Folding Origami
Fig. 9.6, 9.8
Degree-6 vertex folding (Mode 1) (1.2Mb)
Templates
Click on the thumbnail to download a PDF of the template.
Chapter 3:Single Vertex Folds
Fig. 3.2a, 3.4a
Degree-8 vertex
Fig. 3.3c
Not Flat Foldable
Fig. 3.8
Kawasaki's Theorem
Fig. 3.11b
Kawasaki's: Recutting
Chapter 4: Flat Folding is Hard
Fig. 4.5a
Splitter Gadget
Fig. 4.14a
TriangleTwist Gadget
Chapter 5: Rigid Origamie and Degree-4 Vertices
Fig. 5.10
Miura 3x2 Tessellation
Fig. 5.19a
Square Twist (a): M^4
Fig. 5.19b
Square Twist (b): M^2V^2
Fig. 5.22
Square Twist Tessellation
Chapter 6: Origami Design
Fig. 6.5b
Waterbomb crease pattern
Fig. 6.14a
Sawhorse molecule
Fig. 6.15b
Pentagon template
Fig. 6.16c
Uniaxial crease pattern
Fig. 7.6
Nonconvex Pentagon
Fig. 7.8
Turtle Straight Skeleton
Turtle with perpendiculars
Chapter 8: Curved Crease Origami
Chapter 9: Self-Folding Origami
Fig. 10.13a
Degree-4 Vertex Tuck
Open Problems
- Circular Pleat
- Finite Perpendiculars
- Map Folding
- Orthogonally Aligned Creases
- P =? NP
- Single-Vertex
- Stamp Foldings
Articles of Interest
- "Origami Patterns Solve a Major Physics Riddle." 6Oct2025. Quanta link
- "The Stamp Folding Problem From a Mountain-Valley Perspective."
Thomas C. Hull, Adham Ibrahim, Jacob Paltrowitz, Natalya Ter-Saakov, Grace Wang.
Discrete Mathematics & Theoretical Computer Science, vol. 27:3, Combinatorics 8Oct2025. arXiv link.