mixKernel: Omics Data Integration Using Kernel Methods

Kernel-based methods are powerful methods for integrating heterogeneous types of data. mixKernel aims at providing methods to combine kernel for unsupervised exploratory analysis. Different solutions are provided to compute a meta-kernel, in a consensus way or in a way that best preserves the original topology of the data. mixKernel also integrates kernel PCA to visualize similarities between samples in a non linear space and from the multiple source point of view <doi:10.1093/bioinformatics/btx682>. A method to select (as well as funtions to display) important variables is also provided <doi:10.1093/nargab/lqac014>.

Version: 0.9-2
Depends: R (≥ 3.5.0), mixOmics, ggplot2, reticulate (≥ 1.14)
Suggests: rmarkdown, knitr
Published: 2025年04月19日
Author: Nathalie Vialaneix [aut, cre], Celine Brouard [aut], Remi Flamary [aut], Julien Henry [aut], Jerome Mariette [aut]
Maintainer: Nathalie Vialaneix <nathalie.vialaneix at inrae.fr>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Materials: NEWS
CRAN checks: mixKernel results

Documentation:

Reference manual: mixKernel.html , mixKernel.pdf

Downloads:

Package source: mixKernel_0.9-2.tar.gz
Windows binaries: r-devel: mixKernel_0.9-2.zip, r-release: mixKernel_0.9-2.zip, r-oldrel: mixKernel_0.9-2.zip
macOS binaries: r-release (arm64): mixKernel_0.9-2.tgz, r-oldrel (arm64): mixKernel_0.9-2.tgz, r-release (x86_64): mixKernel_0.9-2.tgz, r-oldrel (x86_64): mixKernel_0.9-2.tgz
Old sources: mixKernel archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mixKernel to link to this page.

AltStyle によって変換されたページ (->オリジナル) /