metric_learn package
Module Contents
Base Classes
metric_learn.Constraints(partial_labels)
Class to build constraints from labeled data.
metric_learn.base_metric.BaseMetricLearner([...])
Base class for all metric-learners.
metric_learn.base_metric.MetricTransformer()
Base class for all learners that can transform data into a new space with the metric learned.
metric_learn.base_metric.MahalanobisMixin([...])
Mahalanobis metric learning algorithms.
metric_learn.base_metric._PairsClassifierMixin([...])
Base class for pairs learners.
metric_learn.base_metric._TripletsClassifierMixin([...])
Base class for triplets learners.
metric_learn.base_metric._QuadrupletsClassifierMixin([...])
Base class for quadruplets learners.
Supervised Learning Algorithms
metric_learn.LFDA([n_components, k, ...])
Local Fisher Discriminant Analysis for Supervised Dimensionality Reduction
metric_learn.LMNN([init, n_neighbors, ...])
Large Margin Nearest Neighbor (LMNN)
metric_learn.MLKR([n_components, init, tol, ...])
Metric Learning for Kernel Regression (MLKR)
metric_learn.NCA([init, n_components, ...])
Neighborhood Components Analysis (NCA)
metric_learn.RCA([n_components, preprocessor])
Relevant Components Analysis (RCA)
metric_learn.ITML_Supervised([gamma, ...])
Supervised version of Information Theoretic Metric Learning (ITML)
metric_learn.LSML_Supervised([tol, ...])
Supervised version of Least Squared-residual Metric Learning (LSML)
metric_learn.MMC_Supervised([max_iter, ...])
Supervised version of Mahalanobis Metric for Clustering (MMC)
metric_learn.SDML_Supervised([...])
Supervised version of Sparse Distance Metric Learning (SDML)
metric_learn.RCA_Supervised([n_components, ...])
Supervised version of Relevant Components Analysis (RCA)
metric_learn.SCML_Supervised([k_genuine, ...])
Supervised version of Sparse Compositional Metric Learning (SCML)
Weakly Supervised Learning Algorithms
metric_learn.ITML([gamma, max_iter, tol, ...])
Information Theoretic Metric Learning (ITML)
metric_learn.LSML([tol, max_iter, prior, ...])
Least Squared-residual Metric Learning (LSML)
metric_learn.MMC([max_iter, max_proj, tol, ...])
Mahalanobis Metric for Clustering (MMC)
metric_learn.SDML([balance_param, ...])
Sparse Distance Metric Learning (SDML)
metric_learn.SCML([beta, basis, n_basis, ...])
Sparse Compositional Metric Learning (SCML)
Unsupervised Learning Algorithms
metric_learn.Covariance([preprocessor])
Covariance metric (baseline method)