[フレーム] [フレーム]

Connecting the world and beyond

Programme

Rollup Image
Page Content 20

​PROGRAMME

ITU-R Workshop on "Applications of m​achine learning
​in radio-wave propagation prediction"
27 May 2025
Room H (Montbrillant building), Geneva (Switzerland)

(Registered remote participants to connect to the workshop on the restricted events portal)


Time in CEST S​ession title
08:0009:00 Registration(in-person participants collecting identification badges)
09:0009:10

Openingandwelcome remarks​

    • Welcome remarks from the Radiocommunication Bureau
    • Welcome remarks: Clare ALLEN, Chair ITU-R Study Group 3
​​​09:10 – 10:30​ ​ ​ ​ ​

Session1

Moderator: Clare ALLEN, Chair ITU-R Study Group 3

09:1009:30

Modelling received powe​r from wireless networks in Greece using machine learning

Presenters (remote): Prof Sotirios K. GOUDOSAristotle University of Thessaloniki, Thessaloniki, Greece

                                    Prof George V. TSOULOS, University of Peloponnese, Tripolis, Greece

09:3009:50

High-resolution global land cover maps and their assessment strategies

Presenter (remote): Prof Maria BROVELLI, Politecnico di Milano, Italy

09:50 10:10

Research on the application of artificial intelligence in the inversion and prediction of maritime atmospheric ducts

Presenter (remote): Dr Jiajing WU , China Resea​rch Institute of Radiowave Propagation, China

10:10 10:30

Rainfall monitoring using the propagation features of sub-6 GHz non-line-of-sight wireless signals

​Presenter (remote): Dr Xing WANG, Nanjing University, China

10:30 10:50 Break
​​​10:50 – 12:10

Session 2

Moderator: Dr Zubeir BOCUS, Chair ITU-R CG 3J-K-3L-3M-27

10:50 11:10

The role of spatial information in predicting path loss using machine learning

Presenter (in-person): Dr Takahiro HAYASHI, KDDI-research, Fujimino, Japan

11:10 11:30

Machine learning-aided ray tracing for faster radio propagation prediction

Presenter (in-person): Prof Claude OESTGES, Catholic University of Louvain, Louvain-la-Neuve, Belgium

11:30 11:50

Generalizable n​eural network-based propagation models

Pres​enter (remote): Prof Costas SARRIS, University of Toronto, Canada

11:50– 12:10

AI-enabled propagation modelling with realistically accessibl​e scarce training data: Challenges and Opportunities

Presenter (remote): Prof Ali IMRAN, University of Glasgow, United Kingdom

12:10 12:30​

Session 3

Panel discussion

Moderator: Dr Zubeir BOCUS, Chair ITU-R CG 3J-K-3L-3M-27


​ ​​

Page Content 9
Page Content 10
Page Content 18
Page Content 19
Page Content 6
Page Content 7
Page Content 11
Page Content 12
Page Content 2
Page Content 3
Page Content 4
Page Content 5
Page Content 13
Page Content 14
Page Content 15
Page Content 16

AltStyle によって変換されたページ (->オリジナル) /