分享
  1. 首页
  2. 文章

golang中interface底层分析

XITEHIP · · 2044 次点击 · · 开始浏览
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

golang中的接口分为带方法的接口和空接口。
带方法的接口在底层用iface表示,空接口的底层则是eface表示。下面我们透过底层分别看一下这两种类型的接口原理。

以下是接口的原型:

//runtime/runtime2.go
//非空接口
type iface struct {
 tab *itab
 data unsafe.Pointer
}
type itab struct {
 inter *interfacetype
 _type *_type
 link *itab
 hash uint32 // copy of _type.hash. Used for type switches.
 bad bool // type does not implement interface
 inhash bool // has this itab been added to hash?
 unused [2]byte
 fun [1]uintptr // variable sized
}
//******************************
//空接口
type eface struct {
 _type *_type
 data unsafe.Pointer
}
//========================
//这两个接口共同的字段_type
//========================
//runtime/type.go
type _type struct {
 size uintptr
 ptrdata uintptr // size of memory prefix holding all pointers
 hash uint32
 tflag tflag
 align uint8
 fieldalign uint8
 kind uint8
 alg *typeAlg
 // gcdata stores the GC type data for the garbage collector.
 // If the KindGCProg bit is set in kind, gcdata is a GC program.
 // Otherwise it is a ptrmask bitmap. See mbitmap.go for details.
 gcdata *byte
 str nameOff
 ptrToThis typeOff
}
//_type这个结构体是golang定义数据类型要用的,讲到反射文章的时候在具体讲解这个_type。

1.iface

1.1 变量类型是如何转换成接口类型的?

看下方代码:

package main
type Person interface {
 run()
}
type xitehip struct {
 age uint8
}
func (o xitehip)run() {
}
func main() {
 var xh Person = xitehip{age:18}
 xh.run()
}

xh变量是Person接口类型,那xitehip的struct类型是如何转换成接口类型的呢?
看一下生成的汇编代码:

0x001d 00029 (main.go:13) PCDATA 2,ドル 0ドル
0x001d 00029 (main.go:13) PCDATA 0,ドル 0ドル
0x001d 00029 (main.go:13) MOVB 0,ドル ""..autotmp_1+39(SP)
0x0022 00034 (main.go:13) MOVB 18,ドル ""..autotmp_1+39(SP)
0x0027 00039 (main.go:13) PCDATA 2,ドル 1ドル
0x0027 00039 (main.go:13) LEAQ go.itab."".xitehip,"".Person(SB), AX
0x002e 00046 (main.go:13) PCDATA 2,ドル 0ドル
0x002e 00046 (main.go:13) MOVQ AX, (SP)
0x0032 00050 (main.go:13) PCDATA 2,ドル 1ドル
0x0032 00050 (main.go:13) LEAQ ""..autotmp_1+39(SP), AX
0x0037 00055 (main.go:13) PCDATA 2,ドル 0ドル
0x0037 00055 (main.go:13) MOVQ AX, 8(SP)
0x003c 00060 (main.go:13) CALL runtime.convT2Inoptr(SB)
0x0041 00065 (main.go:13) MOVQ 16(SP), AX
0x0046 00070 (main.go:13) PCDATA 2,ドル 2ドル
0x0046 00070 (main.go:13) MOVQ 24(SP), CX

从汇编发现有个转换函数:
runtime.convT2Inoptr(SB)
我们去看一下这个函数的实现:

func convT2Inoptr(tab *itab, elem unsafe.Pointer) (i iface) {
 t := tab._type
 if raceenabled {
 raceReadObjectPC(t, elem, getcallerpc(), funcPC(convT2Inoptr))
 }
 if msanenabled {
 msanread(elem, t.size)
 }
 x := mallocgc(t.size, t, false)//为elem申请内存
 memmove(x, elem, t.size)//将elem所指向的数据赋值到新的内存中
 i.tab = tab //设置iface的tab
 i.data = x //设置iface的data
 return
}

从以上实现我们发现编译器生成的struct原始数据会复制一份,然后将新的数据地址赋值给iface.data从而生成了完整的iface,这样如下原始代码中的xh就转换成了Person接口类型。

 var xh Person = xitehip{age:18}

用gdb实际运行看一下(见图1):


图1

convT2Inoptr函数传进来的参数是*itab和源码中的 *xitehip。
图2是itab的类型原型和内存中的数据发现itab确实是runtime中源码里的字段。总共占了32个字节。([4]uint8 不占字节)


图2

图3是elem的数据他是个名为xitehip的结构体类型里面存放的是age=18。
内存中的0x12正好是age=18。注意此时的地址是:0xc000032777。


图3

图4是xh变量的数据类型和其中data字段的数据。发现xh确实是iface类型了且xh.data的地址不是上面提到的0xc000032777 而是0xc000014098,证明是复制了一份xitehip类型的struct。
图4

1.2 指针变量类型是如何转换成接口类型的呢?

还是上面的例子只是将

 var xh Person = xitehip{age:18}

换成了

 var xh Person = &xitehip{age:18}

那指针类型的变量是如何转换成接口类型的呢?
见下方汇编代码:

0x001d 00029 (main.go:13) PCDATA 2,ドル 1ドル
0x001d 00029 (main.go:13) PCDATA 0,ドル 0ドル
0x001d 00029 (main.go:13) LEAQ type."".xitehip(SB), AX
0x0024 00036 (main.go:13) PCDATA 2,ドル 0ドル
0x0024 00036 (main.go:13) MOVQ AX, (SP)
0x0028 00040 (main.go:13) CALL runtime.newobject(SB)
0x002d 00045 (main.go:13) PCDATA 2,ドル 1ドル
0x002d 00045 (main.go:13) MOVQ 8(SP), AX
0x0032 00050 (main.go:13) MOVB 18,ドル (AX)

发现了这个函数:

runtime.newobject(SB)

去看一下具体实现:

// implementation of new builtin
// compiler (both frontend and SSA backend) knows the signature
// of this function
func newobject(typ *_type) unsafe.Pointer {
 return mallocgc(typ.size, typ, true)
}

编译器自动生成了iface并将&xitehip{age:18}创建的对象的地址(通过newobject)赋值给iface.data。就是xitehip这个结构体没有被复制。
用gdb看一下见图5:


图5

1.3 那xh是如何找到run方法的呢?我们继续看见图6,相关解释在图中已经标注:

图6

1.4 接口调用规则

把上面的例子添加一个eat()接口方法并实现它(注意这个接口方法的实现的接受者是指针)。

package main
type Person interface {
 run()
 eat(string)
}
type xitehip struct {
 age uint8
}
func (o xitehip)run() { // //接收方o是值
}
func (o *xitehip)eat(food string) { //接收方o是指针
}
func main() {
 var xh Person = &xitehip{age:18} //xh是指针
 xh.eat("ma la xiao long xia!")
 xh.run()
}

这个例子的xh变量的实际类型是个指针,那它是如何调用非指针方法run的呢?
继续gdb跟踪一下,见图7:


图7

直接跟踪xh.tab.fun的内存数据发现eat方法确实在0x44f940。上面已经说了fun这个数组只为1那run方法应该在eat的后面,但是gdb没有提示哪个地方是run的起始位置。为了验证run就在eat的后面,我直接往下debug看eat的入口地址在哪里,见图8。


图8

run指令的地址是0x44fa60。那我去打印一下这个地址所指向的具体的值是什么,见图9:
图9

我们在看一下图7中,为了更清楚我基于图7再截一次图,见图10:
图10

发现图9和和图10的的run方法的指令是一样的。

总结,指针类型的对象调用非指针类型的接收方的方法,编译器自动将接收方转换为指针类型;调用方通过xh.tab.fun这个数组找到对应的方法指令列表。

那xh是值类型的接口,而接口实现的方法的接收方是指针类型,那调用方可以调用这个指针方法吗,答案是不仅不能连编译都编译不过去,见图11:


图11

见下表总结:

调用方 接收方 能否编译
true
指针 false
指针 true
指针 指针 true
指针 指针和值 true
指针和值 false

从上表可以得出如下结论:

调用方是值时,只要接收方有指针方法那编译器不允许通过编译。

2 eface

空接口相对于非空接口没有了方法列表。

type eface struct {
 _type *_type
 data unsafe.Pointer
}

第一个属性由itab换成了_type,这个结构体是golang中的变量类型的基础,所以空接口可以指定任意变量类型。

2.1 示例:

cpackage main
import "fmt"
type xitehip struct {
}
func main() {
 var a interface{} = xitehip{}
 var b interface{} = &xitehip{}
 fmt.Println(a)
 fmt.Println(b)
}

gdb跟一下见图12:


图12

2.2断言

判断变量数据类型

 s, ok := i.(TypeName)
 if ok {
 fmt.Println(s)
 }

如果没有ok的话类型不正确的话会引起panic。

也可以用switch形式:

 switch v := v.(type) {
 case TypeName:
 ...
 }

3 检查接口

3.1 var _ InterfaceName = (*TypeName)(nil) // 利用编译器检查接口实现

3.2 nil和nil interface

3.2.1 nil
func main() {
 var i interface{}
 if i == nil {
 println("The interface is nil.")
 }
}
(gdb) info locals;
i = {_type = 0x0, data = 0x0}
3.2.2 如果接口内部data值为nil,但tab不为空时,此时接口为nil interface。
// go:noinline
func main() {
 var o *int = nil
 var i interface{} = o
 if i == nil {
 println("Nil")
 }
 println(i)
}
(gdb) info locals;
i = {_type = 0x21432f8 <type.*+36723>, data = 0x0}
o = 0x0
3.2.3 利用反射检查
 v := reflect.ValueOf(a)
 if v.Isvalid() {
 println(v.IsNil()) // true, This is nil interface
}

参考
Go interface实现分析--小米云技术
深度解密Go语言之关于 interface 的10个问题
Go Interface 源码剖析


有疑问加站长微信联系(非本文作者)

本文来自:简书

感谢作者:XITEHIP

查看原文:golang中interface底层分析

入群交流(和以上内容无关):加入Go大咖交流群,或添加微信:liuxiaoyan-s 备注:入群;或加QQ群:692541889

关注微信
2044 次点击
添加一条新回复 (您需要 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传

用户登录

没有账号?注册
(追記) (追記ここまで)

今日阅读排行

    加载中
(追記) (追記ここまで)

一周阅读排行

    加载中

关注我

  • 扫码关注领全套学习资料 关注微信公众号
  • 加入 QQ 群:
    • 192706294(已满)
    • 731990104(已满)
    • 798786647(已满)
    • 729884609(已满)
    • 977810755(已满)
    • 815126783(已满)
    • 812540095(已满)
    • 1006366459(已满)
    • 692541889

  • 关注微信公众号
  • 加入微信群:liuxiaoyan-s,备注入群
  • 也欢迎加入知识星球 Go粉丝们(免费)

给该专栏投稿 写篇新文章

每篇文章有总共有 5 次投稿机会

收入到我管理的专栏 新建专栏