You can use zip() to zip together each list and each sublist to compare them element-wise:
Make an iterator that aggregates elements from each of the iterables.
Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables. [...].
>>> def max_value(lst1, lst2):
for subl1, subl2 in zip(lst1, lst2):
for el1, el2 in zip(subl1, subl2):
yield max(el1, el2)
>>>
>>> a=[[2,4],[6,8]]
>>> b=[[1,7],[5,9]]
>>>
>>> list(max_value(a, b))
[2, 7, 6, 9]
If using NumPy, you can use numpy.maximum():
Element-wise maximum of array elements.
Compare two arrays and returns a new array containing the element-wise maxima. [...].
>>> import numpy as np
>>>
>>> a = np.array([[2,4],[6,8]])
>>> b = np.array([[1,7],[5,9]])
>>>
>>> np.maximum(a, b)
array([[2, 7],
[6, 9]])
>>>
You can use zip() to zip together each list and each sublist to compare them element-wise:
Make an iterator that aggregates elements from each of the iterables.
Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables. [...].
>>> def max_value(lst1, lst2):
for subl1, subl2 in zip(lst1, lst2):
for el1, el2 in zip(subl1, subl2):
yield max(el1, el2)
>>>
>>> a=[[2,4],[6,8]]
>>> b=[[1,7],[5,9]]
>>>
>>> list(max_value(a, b))
[2, 7, 6, 9]
If using NumPy, you can use numpy.maximum():
Element-wise maximum of array elements.
Compare two arrays and returns a new array containing the element-wise maxima. [...].
>>> import numpy as np
>>>
>>> a = np.array([[2,4],[6,8]])
>>> b = np.array([[1,7],[5,9]])
>>>
>>> np.maximum(a, b)
array([[2, 7],
[6, 9]])
>>>
You can use zip() to zip together each list and each sublist to compare them element-wise:
Make an iterator that aggregates elements from each of the iterables.
Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables. [...].
>>> def max_value(lst1, lst2):
for subl1, subl2 in zip(lst1, lst2):
for el1, el2 in zip(subl1, subl2):
yield max(el1, el2)
>>>
>>> a=[[2,4],[6,8]]
>>> b=[[1,7],[5,9]]
>>>
>>> list(max_value(a, b))
[2, 7, 6, 9]
If using NumPy, you can use numpy.maximum():
Element-wise maximum of array elements.
Compare two arrays and returns a new array containing the element-wise maxima. [...].
>>> import numpy as np
>>>
>>> a = np.array([[2,4],[6,8]])
>>> b = np.array([[1,7],[5,9]])
>>>
>>> np.maximum(a, b)
array([[2, 7],
[6, 9]])
>>>
You can use zip() to zip together each list and each sublist to compare them element-wise:
Make an iterator that aggregates elements from each of the iterables.
Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables. [...].
>>> def max_value(lst1, lst2):
for subl1, subl2 in zip(lst1, lst2):
for el1, el2 in zip(subl1, subl2):
yield max(el1, el2)
>>>
>>> a=[[2,4],[6,8]]
>>> b=[[1,7],[5,9]]
>>>
>>> list(max_value(a, b))
[2, 7, 6, 9]
If using NumPy, you can use numpy.maximum():
Element-wise maximum of array elements.
Compare two arrays and returns a new array containing the element-wise maxima. [...].
>>> import numpy as np
>>>
>>> a = np.array([[2,4],[6,8]])
>>> b = np.array([[1,7],[5,9]])
>>>
>>> np.maximum(a, b)
array([[2, 7],
[6, 9]])
>>>
You can use zip() to zip together each list and each sublist to compare them element-wise:
Make an iterator that aggregates elements from each of the iterables.
Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables. [...].
>>> def max_value(lst1, lst2):
for subl1, subl2 in zip(lst1, lst2):
for el1, el2 in zip(subl1, subl2):
yield max(el1, el2)
>>>
>>> a=[[2,4],[6,8]]
>>> b=[[1,7],[5,9]]
>>>
>>> list(max_value(a, b))
[2, 7, 6, 9]
If using NumPy, you can use numpy.maximum():
Element-wise maximum of array elements.
Compare two arrays and returns a new array containing the element-wise maxima. [...].
>>> import numpy as np
>>>
>>> a = np.array([[2,4],[6,8]])
>>> b = np.array([[1,7],[5,9]])
>>>
>>> np.maximum(a, b)
array([[2, 7],
[6, 9]])
>>>
You can use zip() to zip together each list and each sublist to compare them element-wise:
Make an iterator that aggregates elements from each of the iterables.
Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables. [...].
>>> def max_value(lst1, lst2):
for subl1, subl2 in zip(lst1, lst2):
for el1, el2 in zip(subl1, subl2):
yield max(el1, el2)
>>>
>>> a=[[2,4],[6,8]]
>>> b=[[1,7],[5,9]]
>>>
>>> list(max_value(a, b))
[2, 7, 6, 9]
If using NumPy, you can use numpy.maximum():
Element-wise maximum of array elements.
Compare two arrays and returns a new array containing the element-wise maxima. [...].
>>> import numpy as np
>>>
>>> a = np.array([[2,4],[6,8]])
>>> b = np.array([[1,7],[5,9]])
>>>
>>> np.maximum(a, b)
array([[2, 7],
[6, 9]])
>>>
You can use zip()zip() to zip together each list and each sublist to compare them element-wise:
Make an iterator that aggregates elements from each of the iterables.
Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables. [...].
>>> def max_value(lst1, lst2):
for subl1, subl2 in zip(lst1, lst2):
for el1, el2 in zip(subl1, subl2):
yield max(el1, el2)
>>>
>>> a=[[2,4],[6,8]]
>>> b=[[1,7],[5,9]]
>>>
>>> list(max_value(a, b))
[2, 7, 6, 9] If using NumPy, you can use numpy.maximum() :
Element-wise maximum of array elements.
Compare two arrays and returns a new array containing the element-wise maxima. [...].
>>> import numpy as np
>>>
>>> a = np.array([[2,4],[6,8]])
>>> b = np.array([[1,7],[5,9]])
>>>
>>> np.maximum(a, b)
array([[2, 7],
[6, 9]])
>>>
You can use zip() to zip together each list and each sublist to compare them element-wise:
>>> def max_value(lst1, lst2):
for subl1, subl2 in zip(lst1, lst2):
for el1, el2 in zip(subl1, subl2):
yield max(el1, el2)
>>>
>>> a=[[2,4],[6,8]]
>>> b=[[1,7],[5,9]]
>>>
>>> list(max_value(a, b))
[2, 7, 6, 9]
You can use zip() to zip together each list and each sublist to compare them element-wise:
Make an iterator that aggregates elements from each of the iterables.
Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables. [...].
>>> def max_value(lst1, lst2):
for subl1, subl2 in zip(lst1, lst2):
for el1, el2 in zip(subl1, subl2):
yield max(el1, el2)
>>>
>>> a=[[2,4],[6,8]]
>>> b=[[1,7],[5,9]]
>>>
>>> list(max_value(a, b))
[2, 7, 6, 9] If using NumPy, you can use numpy.maximum() :
Element-wise maximum of array elements.
Compare two arrays and returns a new array containing the element-wise maxima. [...].
>>> import numpy as np
>>>
>>> a = np.array([[2,4],[6,8]])
>>> b = np.array([[1,7],[5,9]])
>>>
>>> np.maximum(a, b)
array([[2, 7],
[6, 9]])
>>>