SourceForge logo
SourceForge logo
Numerical Python

Numerical Python Files

A package for scientific computing with Python

The interactive file manager requires Javascript. Please enable it or use sftp or scp.
You may still browse the files here.

Download Latest Version numpy-1.11.2.zip (4.7 MB)
Email in envelope

Get an email when there's a new version of Numerical Python

Home / NumPy / 1.6.0
Name Modified Size InfoDownloads / Week
Parent folder
README.txt 2011年05月15日 6.8 kB
0
numpy-1.6.0-py2.7-python.org-macosx10.3.dmg 2011年05月15日 8.8 MB
0
numpy-1.6.0-py2.6-python.org-macosx10.3.dmg 2011年05月15日 8.8 MB
0
numpy-1.6.0-py2.5-python.org-macosx10.3.dmg 2011年05月15日 8.8 MB
0
numpy-1.6.0.zip 2011年05月14日 3.4 MB
0
numpy-1.6.0.tar.gz 2011年05月14日 2.6 MB
0
numpy-1.6.0-win32-superpack-python3.2.exe 2011年05月14日 5.9 MB
0
numpy-1.6.0-win32-superpack-python3.1.exe 2011年05月14日 6.2 MB
0
numpy-1.6.0-win32-superpack-python2.7.exe 2011年05月14日 5.7 MB
0
numpy-1.6.0-win32-superpack-python2.6.exe 2011年05月14日 5.9 MB
0
numpy-1.6.0-win32-superpack-python2.5.exe 2011年05月14日 5.7 MB
0
numpy-1.6.0-py2.7-python.org-macosx10.6.dmg 2011年05月14日 8.8 MB
0
userguide.pdf 2011年05月14日 474.8 kB
0
reference.pdf 2011年05月14日 6.0 MB
0
Changelog 2011年05月14日 163.0 kB
0
Totals: 15 Items 77.4 MB 0
=========================
NumPy 1.6.0 Release Notes
=========================
This release includes several new features as well as numerous bug fixes and
improved documentation. It is backward compatible with the 1.5.0 release, and
supports Python 2.4 - 2.7 and 3.1 - 3.2.
Highlights
==========
* Re-introduction of datetime dtype support to deal with dates in arrays.
* A new 16-bit floating point type.
* A new iterator, which improves performance of many functions.
New features
============
New 16-bit floating point type
------------------------------
This release adds support for the IEEE 754-2008 binary16 format, available as
the data type ``numpy.half``. Within Python, the type behaves similarly to
`float` or `double`, and C extensions can add support for it with the exposed
half-float API.
New iterator
------------
A new iterator has been added, replacing the functionality of the
existing iterator and multi-iterator with a single object and API.
This iterator works well with general memory layouts different from
C or Fortran contiguous, and handles both standard NumPy and
customized broadcasting. The buffering, automatic data type
conversion, and optional output parameters, offered by
ufuncs but difficult to replicate elsewhere, are now exposed by this
iterator.
Legendre, Laguerre, Hermite, HermiteE polynomials in ``numpy.polynomial``
-------------------------------------------------------------------------
Extend the number of polynomials available in the polynomial package. In
addition, a new ``window`` attribute has been added to the classes in
order to specify the range the ``domain`` maps to. This is mostly useful
for the Laguerre, Hermite, and HermiteE polynomials whose natural domains
are infinite and provides a more intuitive way to get the correct mapping
of values without playing unnatural tricks with the domain.
Fortran assumed shape array and size function support in ``numpy.f2py``
-----------------------------------------------------------------------
F2py now supports wrapping Fortran 90 routines that use assumed shape
arrays. Before such routines could be called from Python but the
corresponding Fortran routines received assumed shape arrays as zero
length arrays which caused unpredicted results. Thanks to Lorenz
Hüdepohl for pointing out the correct way to interface routines with
assumed shape arrays.
In addition, f2py supports now automatic wrapping of Fortran routines
that use two argument ``size`` function in dimension specifications.
Other new functions
-------------------
``numpy.ravel_multi_index`` : Converts a multi-index tuple into
an array of flat indices, applying boundary modes to the indices.
``numpy.einsum`` : Evaluate the Einstein summation convention. Using the
Einstein summation convention, many common multi-dimensional array operations
can be represented in a simple fashion. This function provides a way compute
such summations.
``numpy.count_nonzero`` : Counts the number of non-zero elements in an array.
``numpy.result_type`` and ``numpy.min_scalar_type`` : These functions expose
the underlying type promotion used by the ufuncs and other operations to
determine the types of outputs. These improve upon the ``numpy.common_type``
and ``numpy.mintypecode`` which provide similar functionality but do
not match the ufunc implementation.
Changes
=======
``default error handling``
--------------------------
The default error handling has been change from ``print`` to ``warn`` for
all except for ``underflow``, which remains as ``ignore``.
``numpy.distutils``
-------------------
Several new compilers are supported for building Numpy: the Portland Group
Fortran compiler on OS X, the PathScale compiler suite and the 64-bit Intel C
compiler on Linux.
``numpy.testing``
-----------------
The testing framework gained ``numpy.testing.assert_allclose``, which provides
a more convenient way to compare floating point arrays than
`assert_almost_equal`, `assert_approx_equal` and `assert_array_almost_equal`.
``C API``
---------
In addition to the APIs for the new iterator and half data type, a number
of other additions have been made to the C API. The type promotion
mechanism used by ufuncs is exposed via ``PyArray_PromoteTypes``,
``PyArray_ResultType``, and ``PyArray_MinScalarType``. A new enumeration
``NPY_CASTING`` has been added which controls what types of casts are
permitted. This is used by the new functions ``PyArray_CanCastArrayTo``
and ``PyArray_CanCastTypeTo``. A more flexible way to handle
conversion of arbitrary python objects into arrays is exposed by
``PyArray_GetArrayParamsFromObject``.
Deprecated features
===================
The "normed" keyword in ``numpy.histogram`` is deprecated. Its functionality
will be replaced by the new "density" keyword.
Removed features
================
``numpy.fft``
-------------
The functions `refft`, `refft2`, `refftn`, `irefft`, `irefft2`, `irefftn`,
which were aliases for the same functions without the 'e' in the name, were
removed.
``numpy.memmap``
----------------
The `sync()` and `close()` methods of memmap were removed. Use `flush()` and
"del memmap" instead.
``numpy.lib``
-------------
The deprecated functions ``numpy.unique1d``, ``numpy.setmember1d``,
``numpy.intersect1d_nu`` and ``numpy.lib.ufunclike.log2`` were removed.
``numpy.ma``
------------
Several deprecated items were removed from the ``numpy.ma`` module::
 * ``numpy.ma.MaskedArray`` "raw_data" method
 * ``numpy.ma.MaskedArray`` constructor "flag" keyword
 * ``numpy.ma.make_mask`` "flag" keyword
 * ``numpy.ma.allclose`` "fill_value" keyword
``numpy.distutils``
-------------------
The ``numpy.get_numpy_include`` function was removed, use ``numpy.get_include``
instead.
Checksums
=========
bbd8b26595229f38c6675cff8c026592 release/installers/numpy-1.6.0-py2.5-python.org-macosx10.3.dmg
e283ba16481670ed60d6ea9da4f94dc4 release/installers/numpy-1.6.0-py2.6-python.org-macosx10.3.dmg
868aa331b3b691e91a16e65ddb52906b release/installers/numpy-1.6.0-py2.7-python.org-macosx10.3.dmg
14f494dae69a502265caeb58e5eb4582 release/installers/numpy-1.6.0-py2.7-python.org-macosx10.6.dmg
4cdfc1e86e810b572e7709eedf6fc9c2 release/installers/numpy-1.6.0-win32-superpack-python2.5.exe
662e1e92e6a333832a30c40b32f32dad release/installers/numpy-1.6.0-win32-superpack-python2.6.exe
2bb3c283cf90bf6c807229c26b97ab28 release/installers/numpy-1.6.0-win32-superpack-python2.7.exe
80b65ff880c4fb28617ec1f4247161b5 release/installers/numpy-1.6.0-win32-superpack-python3.1.exe
e68d0bc8f8b034295aaa8bf6397d9a41 release/installers/numpy-1.6.0-win32-superpack-python3.2.exe
e0993c74cb8e83292e560eac1a9be8e9 release/installers/numpy-1.6.0.tar.gz
f0ce7ea1a12b3b3480571980af243e48 release/installers/numpy-1.6.0.zip
Source: README.txt, updated 2011年05月15日
You Might Also Like
無料プランが拡大! | Auth0 Icon
無料プランが拡大! | Auth0

無料プランのMAUは25,000まで、さらに、Okta Connectionsが無制限になり、開発者のみなさんがアプリの開発に注力することができるようになりました。

無料・有料プランを拡張してほしい!そのような声を開発者の方々からいただき、プランが大幅に変更されました。プランの制約とセキュリティーの悩みから解き放たれ、みなさんが開発に集中できるようになることを願っています。
無料で始める
Get to know our award-winning HR software. Icon
Get to know our award-winning HR software.

HR software with heart.

BambooHR is all-in-one HR software made for small and medium businesses and the people who work in them—like you. Our software makes it easy to collect, maintain, and analyze your people data, improve the way you hire talent, onboard new employees, manage compensation, and develop your company culture. It’s designed to set you free to focus on what matters most—your people.
Try it Free
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.
Thanks for helping keep SourceForge clean.
X

Briefly describe the problem (required):
Upload screenshot of ad (required):
Select a file, or drag & drop file here.
Screenshot instructions:

Click URL instructions:
Right-click on the ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)

More information about our ad policies

Ad destination/click URL:

AltStyle によって変換されたページ (->オリジナル) /