JSON Example/Tour
This example shows using JSON with SQLite, and additional functionality provided by APSW to make it easier to use.
#!/usr/bin/env python3 # This code uses Python's optional typing annotations. You can # ignore them and do not need to use them. If you do use them # then you must include this future annotations line first. from__future__import annotations fromtypingimport Any importbase64 importcontextvars importdatetime importdecimal fromtypesimport MappingProxyType frompprintimport pprint importapsw importapsw.ext # A database to work on connection = apsw.Connection("") # And the table connection.execute( """CREATE TABLE items( name, shape, extra ); """ ) # This method is used to show queries and results defquery(sql, bindings=None): print(f"\n\n{sql}") result = connection.execute(sql, bindings).fetchall() if len(result): pprint(result[0] if len(result) == 1 else result)
Quick start
Described here in the JSON background and detail.
If you do not use blobs and just want it to look like SQLite has JSON as a native data type, then do the following.
defconvert_binding( cursor: apsw.Cursor, num: int, value: Any ) -> bytes: # called to convert unknown types - we convert to JSONB return apsw.jsonb_encode(value) defconvert_jsonb( cursor: apsw.Cursor, column: int, value: bytes ) -> Any: # Called when a blob is valid JSONB. If you don't use blobs then # this is all that is needed. If you do use blobs then you can # examine information from the cursor/query to decide, shown # further down. return apsw.jsonb_decode(value) # install the callbacks connection.convert_binding = convert_binding connection.convert_jsonb = convert_jsonb example_data = { "origin": "Spain", "diameter": 7.5, "sugar": 23, "tags": ["citrus", "sweet", "juice"], } # Note how we can INSERT the data connection.execute( "INSERT INTO items VALUES(?, ?, ?)", ("orange", "round", example_data), ) # And get it back query("SELECT shape, extra FROM items WHERE name='orange'") # If you want the data returned to be read only then use this. # Note how the list becomes a tuple and dict becomes MappingProxyType # which doesn't allow writes. defconvert_jsonb_readonly( cursor: apsw.Cursor, column: int, value: bytes ) -> Any: return apsw.jsonb_decode( value, array_hook=tuple, object_hook=MappingProxyType ) connection.convert_jsonb = convert_jsonb_readonly query("SELECT shape, extra FROM items WHERE name='orange'")
SELECT shape, extra FROM items WHERE name='orange' ('round', {'diameter': 7.5, 'origin': 'Spain', 'sugar': 23, 'tags': ['citrus', 'sweet', 'juice']}) SELECT shape, extra FROM items WHERE name='orange' ('round', mappingproxy({'diameter': 7.5, 'origin': 'Spain', 'sugar': 23, 'tags': ('citrus', 'sweet', 'juice')}))
SQLite JSON functions
SQLite has over 30 functions for dealing with JSON. Here are some of the most useful.
# -> extracts a subcomponent in JSON text format. Note how origin # includes the double quotes in the response. $ is used to indicate # top level. query("SELECT extra -> '$.origin' FROM items") # ->> extracts as a SQLite value so origin in a plain string. query("SELECT extra ->> '$.origin' FROM items") # Lets get the first tag query("SELECT extra ->> '$.tags[0]' FROM items") # Iterate over each tag - you would typically use this with a JOIN query( "SELECT name, shape, value FROM items, json_each(items.extra, '$.tags')" )
SELECT extra -> '$.origin' FROM items ('"Spain"',) SELECT extra ->> '$.origin' FROM items ('Spain',) SELECT extra ->> '$.tags[0]' FROM items ('citrus',) SELECT name, shape, value FROM items, json_each(items.extra, '$.tags') [('orange', 'round', 'citrus'), ('orange', 'round', 'sweet'), ('orange', 'round', 'juice')]
Customising conversion
The convert_binding() and
convert_jsonb() functions are provided with the
Cursor as the first parameter, and a second parameter with
the binding number or column being returned. You can use
Cursor.bindings_names and Cursor.description for
more details about the value being converted. You can also use
Cursor.connection to get back to the connection and your own
data structures. contextvars can be used to provide more.
jsonb_encode() and jsonb_decode() have parameters
like the json module functions for controlling how non-JSON
Python types can be converted to JSON compatible ones, and how JSON values
are converted back to Python objects.
This section shows all of these in action at once!
volume: contextvars.ContextVar[str] = contextvars.ContextVar( "volume", default="quiet" ) defpy_to_json(value): # Used by jsonb_encode to convert types that aren't JSON compatible if isinstance(value, bytes): # base64 encode binary data. Note it returns bytes so we have to # convert to text. return base64.b64encode(value).decode("ascii") if isinstance(value, datetime.datetime): # ISO8601 return value.isoformat() if isinstance(value, decimal.Decimal): # Create JSONB bytes directly. Tag 5 is FLOAT. str of a Decimal # gives a full precision string of the value return apsw.ext.make_jsonb(5, str(value)) if isinstance(value, complex): # The above are all single values. For objects with multiple # fields we return a dict with their members and a key to # detect this return { # I made up this key as unlikely to be used in other dicts "$py$type": "complex", # fields from complex "real": value.real, "imag": value.imag, } raise TypeError(f"Can't convert {value!r}") defconvert_binding(cursor: apsw.Cursor, num: int, value: Any): # note that binding numbers start at 1 print(f"\nconvert_binding callback {num=}{value=!r:.20}...") print(f"{cursor.bindings_count=}") print(f"{cursor.bindings_names=}") print(f"contextvar {volume.get()=}") return apsw.jsonb_encode(value, default=py_to_json) connection.convert_binding = convert_binding # The above deals with conversion to JSONB, now deal with # conversion from JSONB defobject_hook(value: dict): # We will use this to convert back to a Python type match value.get("$py$type"): case None: # Doesn't have this key, so return as is return value case "complex": return complex(value["real"], value["imag"]) case_: raise ValueError("Unknown $py$type") defconvert_jsonb(cursor: apsw.Cursor, num: int, value: bytes): print(f"\nconvert_jsonb callback {num=}{value=!r:.20}...") # the description will contain the column names, declared types and # more if using description_full print(f"columns are {[col[0]forcolincursor.description]}") print(f"contextvar {volume.get()=}\n") # We want decimal to handle float conversion because it has more # precision return apsw.jsonb_decode( value, object_hook=object_hook, parse_float=decimal.Decimal ) connection.convert_jsonb = convert_jsonb example_data = { "binary": b"\x01\x73\x94\x65", "date stamp": datetime.datetime.now(), "decimal": decimal.Decimal( "0.7843262344923523492342352344523423423423" ), "complex": 3 + 4j, } # Use the contextvar with volume.set("loud"): query( "SELECT $name AS scope, $data AS hello", { "name": "test", "data": example_data, }, )
SELECT $name AS scope, $data AS hello convert_binding callback num=2 value={'binary': b'\x01s\x... cursor.bindings_count=2 cursor.bindings_names=('name', 'data') contextvar volume.get()='loud' convert_jsonb callback num=1 value=b'\xec\x00\x00\x00\x... columns are ['scope', 'hello'] contextvar volume.get()='loud' ('test', {'binary': 'AXOUZQ==', 'complex': (3+4j), 'date stamp': '2025年11月28日T10:45:56.080151', 'decimal': Decimal('0.7843262344923523492342352344523423423423')})
Cleanup
No cleanup is needed. Converters are automatically cleared when connections and cursors are no longer used.