WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center
Wolfram Language Home Page »

Symbolic Vectors, Matrices and Arrays

By using a symbol to represent a vector, matrix or array, one gets an efficient notation to model a mathematical problem. Indeed, most scientific, engineering and statistical domains have transitioned to use this type of more abstract and efficient notation. The Wolfram Language has a rich symbolic array language to describe problems. Most high-level solvers support symbolic array expressions and array variables, making it easy and efficient to specify high-dimensional problems.

Symbolic Array Variables

xVectors[] assume x is a vector

Matrices   Arrays

xregion assume x is a vector from a geometric region

VectorSymbol define a vector symbol that can be used together with listable functions

MatrixSymbol   ArraySymbol   NonThreadable

Symbolic Array Constants

Common zero-one arrays in array formulas.

SymbolicZerosArray   SymbolicOnesArray   SymbolicIdentityArray   SymbolicDeltaProductArray

Symbolic Array Functions

Dot vector and matrix inner product

ArrayDot generalized array inner product

Norm   Tr   Det   Cross   Transpose   TensorProduct   TensorContract   KroneckerProduct   TensorWedge

Matrix functions

Inverse   Adjugate   PseudoInverse   LinearSolve   LeastSquares   MatrixPower   MatrixExp   MatrixLog   MatrixFunction

Statistics functions

Total   Mean   StandardDeviation   Variance   Covariance   Correlation   AbsoluteCorrelation   Kurtosis   Skewness   Moment   CentralMoment   FactorialMoment   Cumulant

Symbolic Array Predicates

Array equations and inequations

Equal   Unequal

Array inequalities

VectorLessEqual   VectorLess   VectorGreaterEqual   VectorGreater

Simplification and Transformations

ArraySimplify simplify symbolic array expressions

ArrayExpand expand symbolic array expressions

ComponentExpand expand symbolic array expressions into their components

Array Derivatives

D symbolic differentiation w.r.t. vector, matrix and array variables

Grad   Div   Laplacian

Array Limits

Limit compute limits using symbolic vector variables

MaxLimit   MinLimit

Array Algebraic Equation Solvers

Solve solve equations and inequalities with symbolic array variables

NSolve   SolveValues   NSolveValues   Reduce   FindInstance   FindRoot

Array Optimization Solvers

Minimize optimize using symbolic array variables

MinValue   ArgMin   Maximize   MaxValue   ArgMax   NMinimize   NMinValue   NArgMin   NMaximize   NMaxValue   NArgMax   FindMinimum   FindMinValue   FindArgMin   FindMaximum   FindMaxValue   FindArgMax

Convex optimization constraints are often expressed using vector and matrix inequalities.

ConvexOptimization   ParametricConvexOptimization   RobustConvexOptimization   LinearOptimization   LinearFractionalOptimization   QuadraticOptimization   SecondOrderConeOptimization   SemidefiniteOptimization   GeometricOptimization   ConicOptimization

Array Integration Solvers

Integrate , NIntegrate integrate expressions with symbolic vector variables

LineIntegrate   NLineIntegrate   SurfaceIntegrate   NSurfaceIntegrate

Array Differential Equation Solvers

NDSolve solve differential equations with symbolic array variables

DSolve   NDSolveValue   DSolveValue   ParametricNDSolveValue   AsymptoticDSolveValue

Array Difference Equation Solvers

RSolve solve difference equations with symbolic array variables

RSolveValue   AsymptoticRSolveValue

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /