WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center
Wolfram Language Home Page »

Logic & Boolean Algebra

The Wolfram Language represents Boolean expressions in symbolic form, so they can not only be evaluated, but also be symbolically manipulated and transformed. Incorporating state-of-the-art quantifier elimination, satisfiability, and equational logic theorem proving, the Wolfram Language provides a powerful framework for investigations based on Boolean algebra.

Logical Operators »

And (&& , )  Or (|| , )  Not (! ,¬ )  Nand ( )  Nor ( )  Xor ( )  Implies ( )  Equivalent ( )  Equal (== )  Unequal (!= )  ...

True , False symbolic truth values

Boole convert symbolic truth values to 0 and 1

AllTrue   AnyTrue   NoneTrue

Boolean Computation »

BooleanFunction general Boolean function

BooleanConvert   BooleanMinimize   SatisfiableQ   ...

Mathematical Logic

FullSimplify simplify logic expressions and prove theorems

ForAll ( ), Exists ( ) quantifiers

Resolve   Reduce   FindInstance

Automated Theorem Proving »

FindEquationalProof generate representations of proofs in equational logic

ProofObject   AxiomaticTheory   ...

Boolean Vector Operations

Nearest , FindClusters operate on Boolean vectors

HammingDistance   MatchingDissimilarity   ...

Related Tech Notes

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /