Lemmatization is the process of grouping together the inflected forms of a word so they can be analysed as a single item, identified by the word's lemma, or dictionary form. Unlike stemming, lemmatization outputs word units that are still valid linguistic forms.
In modern natural language processing (NLP), this task is often indirectly tackled by more complex systems encompassing a whole processing pipeline. However, it appears that there is no straightforward way to address lemmatization in Python although this task is useful in information retrieval and natural language processing.
Simplemma provides a simple and multilingual approach to look for base forms or lemmata. It may not be as powerful as full-fledged solutions but it is generic, easy to install and straightforward to use. In particular, it doesn't need morphosyntactic information and can process a raw series of tokens or even a text with its built-in (simple) tokenizer. By design it should be reasonably fast and work in a
Based on the "Natural Language Processing" category.
Alternatively, view simplemma alternatives based on common mentions on social networks and blogs.
* Code Quality Rankings and insights are calculated and provided by Lumnify.
They vary from L1 to L5 with "L5" being the highest.
Do you think we are missing an alternative of Simplemma or a related project?
Do not miss the trending, packages, news and articles with our weekly report.