=head1 NAME perlpacktut - tutorial on C and C =head1 DESCRIPTION C and C are two functions for transforming data according to a user-defined template, between the guarded way Perl stores values and some well-defined representation as might be required in the environment of a Perl program. Unfortunately, they're also two of the most misunderstood and most often overlooked functions that Perl provides. This tutorial will demystify them for you. =head1 The Basic Principle Most programming languages don't shelter the memory where variables are stored. In C, for instance, you can take the address of some variable, and the C operator tells you how many bytes are allocated to the variable. Using the address and the size, you may access the storage to your heart's content. In Perl, you just can't access memory at random, but the structural and representational conversion provided by C and C is an excellent alternative. The C function converts values to a byte sequence containing representations according to a given specification, the so-called "template" argument. C is the reverse process, deriving some values from the contents of a string of bytes. (Be cautioned, however, that not all that has been packed together can be neatly unpacked - a very common experience as seasoned travellers are likely to confirm.) Why, you may ask, would you need a chunk of memory containing some values in binary representation? One good reason is input and output accessing some file, a device, or a network connection, whereby this binary representation is either forced on you or will give you some benefit in processing. Another cause is passing data to some system call that is not available as a Perl function: C requires you to provide parameters stored in the way it happens in a C program. Even text processing (as shown in the next section) may be simplified with judicious usage of these two functions. To see how (un)packing works, we'll start with a simple template code where the conversion is in low gear: between the contents of a byte sequence and a string of hexadecimal digits. Let's use C, since this is likely to remind you of a dump program, or some desperate last message unfortunate programs are wont to throw at you before they expire into the wild blue yonder. Assuming that the variable C<$mem> holds a sequence of bytes that we'd like to inspect without assuming anything about its meaning, we can write my( $hex ) = unpack( 'H*', $mem ); print "$hex\n"; whereupon we might see something like this, with each pair of hex digits corresponding to a byte: 41204d414e204120504c414e20412043414e414c2050414e414d41 What was in this chunk of memory? Numbers, characters, or a mixture of both? Assuming that we're on a computer where ASCII (or some similar) encoding is used: hexadecimal values in the range C<0x40> - C<0x5a> indicate an uppercase letter, and C<0x20> encodes a space. So we might assume it is a piece of text, which some are able to read like a tabloid; but others will have to get hold of an ASCII table and relive that firstgrader feeling. Not caring too much about which way to read this, we note that C with the template code C converts the contents of a sequence of bytes into the customary hexadecimal notation. Since "a sequence of" is a pretty vague indication of quantity, C has been defined to convert just a single hexadecimal digit unless it is followed by a repeat count. An asterisk for the repeat count means to use whatever remains. The inverse operation - packing byte contents from a string of hexadecimal digits - is just as easily written. For instance: my $s = pack( 'H2' x 10, 30..39 ); print "$s\n"; Since we feed a list of ten 2-digit hexadecimal strings to C, the pack template should contain ten pack codes. If this is run on a computer with ASCII character coding, it will print C<0123456789>. =head1 Packing Text Let's suppose you've got to read in a data file like this: Date |Description | Income|Expenditure 01/24/2001 Zed's Camel Emporium 1147.99 01/28/2001 Flea spray 24.99 01/29/2001 Camel rides to tourists 235.00 How do we do it? You might think first to use C; however, since C collapses blank fields, you'll never know whether a record was income or expenditure. Oops. Well, you could always use C: while () { my $date = substr($_, 0, 11); my $desc = substr($_, 12, 27); my $income = substr($_, 40, 7); my $expend = substr($_, 52, 7); ... } It's not really a barrel of laughs, is it? In fact, it's worse than it may seem; the eagle-eyed may notice that the first field should only be 10 characters wide, and the error has propagated right through the other numbers - which we've had to count by hand. So it's error-prone as well as horribly unfriendly. Or maybe we could use regular expressions: while () { my($date, $desc, $income, $expend) = m|(\d\d/\d\d/\d{4}) (.{27}) (.{7})(.*)|; ... } Urgh. Well, it's a bit better, but - well, would you want to maintain that? Hey, isn't Perl supposed to make this sort of thing easy? Well, it does, if you use the right tools. C and C are designed to help you out when dealing with fixed-width data like the above. Let's have a look at a solution with C: while () { my($date, $desc, $income, $expend) = unpack("A10xA27xA7A*", $_); ... } That looks a bit nicer; but we've got to take apart that weird template. Where did I pull that out of? OK, let's have a look at some of our data again; in fact, we'll include the headers, and a handy ruler so we can keep track of where we are. 1 2 3 4 5 1234567890123456789012345678901234567890123456789012345678 Date |Description | Income|Expenditure 01/28/2001 Flea spray 24.99 01/29/2001 Camel rides to tourists 235.00 From this, we can see that the date column stretches from column 1 to column 10 - ten characters wide. The C-ese for "character" is C, and ten of them are C. So if we just wanted to extract the dates, we could say this: my($date) = unpack("A10", $_); OK, what's next? Between the date and the description is a blank column; we want to skip over that. The C template means "skip forward", so we want one of those. Next, we have another batch of characters, from 12 to 38. That's 27 more characters, hence C. (Don't make the fencepost error - there are 27 characters between 12 and 38, not 26. Count 'em!) Now we skip another character and pick up the next 7 characters: my($date,$description,$income) = unpack("A10xA27xA7", $_); Now comes the clever bit. Lines in our ledger which are just income and not expenditure might end at column 46. Hence, we don't want to tell our C pattern that we B to find another 12 characters; we'll just say "if there's anything left, take it". As you might guess from regular expressions, that's what the C<*> means: "use everything remaining". =over 3 =item * Be warned, though, that unlike regular expressions, if the C template doesn't match the incoming data, Perl will scream and die. =back Hence, putting it all together: my ($date, $description, $income, $expend) = unpack("A10xA27xA7xA*", $_); Now, that's our data parsed. I suppose what we might want to do now is total up our income and expenditure, and add another line to the end of our ledger - in the same format - saying how much we've brought in and how much we've spent: while () { my ($date, $desc, $income, $expend) = unpack("A10xA27xA7xA*", $_); $tot_income += $income; $tot_expend += $expend; } $tot_income = sprintf("%.2f", $tot_income); # Get them into $tot_expend = sprintf("%.2f", $tot_expend); # "financial" format $date = POSIX::strftime("%m/%d/%Y", localtime); # OK, let's go: print pack("A10xA27xA7xA*", $date, "Totals", $tot_income, $tot_expend); Oh, hmm. That didn't quite work. Let's see what happened: 01/24/2001 Zed's Camel Emporium 1147.99 01/28/2001 Flea spray 24.99 01/29/2001 Camel rides to tourists 1235.00 03/23/2001Totals 1235.001172.98 OK, it's a start, but what happened to the spaces? We put C, didn't we? Shouldn't it skip forward? Let's look at what L says: x A null byte. Urgh. No wonder. There's a big difference between "a null byte", character zero, and "a space", character 32. Perl's put something between the date and the description - but unfortunately, we can't see it! What we actually need to do is expand the width of the fields. The C format pads any non-existent characters with spaces, so we can use the additional spaces to line up our fields, like this: print pack("A11 A28 A8 A*", $date, "Totals", $tot_income, $tot_expend); (Note that you can put spaces in the template to make it more readable, but they don't translate to spaces in the output.) Here's what we got this time: 01/24/2001 Zed's Camel Emporium 1147.99 01/28/2001 Flea spray 24.99 01/29/2001 Camel rides to tourists 1235.00 03/23/2001 Totals 1235.00 1172.98 That's a bit better, but we still have that last column which needs to be moved further over. There's an easy way to fix this up: unfortunately, we can't get C to right-justify our fields, but we can get C to do it: $tot_income = sprintf("%.2f", $tot_income); $tot_expend = sprintf("%12.2f", $tot_expend); $date = POSIX::strftime("%m/%d/%Y", localtime); print pack("A11 A28 A8 A*", $date, "Totals", $tot_income, $tot_expend); This time we get the right answer: 01/28/2001 Flea spray 24.99 01/29/2001 Camel rides to tourists 1235.00 03/23/2001 Totals 1235.00 1172.98 So that's how we consume and produce fixed-width data. Let's recap what we've seen of C and C so far: =over 3 =item * Use C to go from several pieces of data to one fixed-width version; use C to turn a fixed-width-format string into several pieces of data. =item * The pack format C means "any character"; if you're Cing and you've run out of things to pack, C will fill the rest up with spaces. =item * C means "skip a byte" when Cing; when Cing, it means "introduce a null byte" - that's probably not what you mean if you're dealing with plain text. =item * You can follow the formats with numbers to say how many characters should be affected by that format: C means "take 12 characters"; C means "skip 6 bytes" or "character 0, 6 times". =item * Instead of a number, you can use C<*> to mean "consume everything else left". B: when packing multiple pieces of data, C<*> only means "consume all of the current piece of data". That's to say pack("A*A*", $one, $two) packs all of C<$one> into the first C and then all of C<$two> into the second. This is a general principle: each format character corresponds to one piece of data to be Ced. =back =head1 Packing Numbers So much for textual data. Let's get onto the meaty stuff that C and C are best at: handling binary formats for numbers. There is, of course, not just one binary format - life would be too simple - but Perl will do all the finicky labor for you. =head2 Integers Packing and unpacking numbers implies conversion to and from some I binary representation. Leaving floating point numbers aside for the moment, the salient properties of any such representation are: =over 4 =item * the number of bytes used for storing the integer, =item * whether the contents are interpreted as a signed or unsigned number, =item * the byte ordering: whether the first byte is the least or most significant byte (or: little-endian or big-endian, respectively). =back So, for instance, to pack 20302 to a signed 16 bit integer in your computer's representation you write my $ps = pack( 's', 20302 ); Again, the result is a string, now containing 2 bytes. If you print this string (which is, generally, not recommended) you might see C or C (depending on your system's byte ordering) - or something entirely different if your computer doesn't use ASCII character encoding. Unpacking C<$ps> with the same template returns the original integer value: my( $s ) = unpack( 's', $ps ); This is true for all numeric template codes. But don't expect miracles: if the packed value exceeds the allotted byte capacity, high order bits are silently discarded, and unpack certainly won't be able to pull them back out of some magic hat. And, when you pack using a signed template code such as C, an excess value may result in the sign bit getting set, and unpacking this will smartly return a negative value. 16 bits won't get you too far with integers, but there is C and C for signed and unsigned 32-bit integers. And if this is not enough and your system supports 64 bit integers you can push the limits much closer to infinity with pack codes C and C. A notable exception is provided by pack codes C and C for signed and unsigned integers of the "local custom" variety: Such an integer will take up as many bytes as a local C compiler returns for C, but it'll use I 32 bits. Each of the integer pack codes C results in a fixed number of bytes, no matter where you execute your program. This may be useful for some applications, but it does not provide for a portable way to pass data structures between Perl and C programs (bound to happen when you call XS extensions or the Perl function C), or when you read or write binary files. What you'll need in this case are template codes that depend on what your local C compiler compiles when you code C or C, for instance. These codes and their corresponding byte lengths are shown in the table below. Since the C standard leaves much leeway with respect to the relative sizes of these data types, actual values may vary, and that's why the values are given as expressions in C and Perl. (If you'd like to use values from C<%config> in your program you have to import it with C.) signed unsigned byte length in C byte length in Perl s! S! sizeof(short) $Config{shortsize} i! I! sizeof(int) $Config{intsize} l! L! sizeof(long) $Config{longsize} q! Q! sizeof(long long) $Config{longlongsize} The C and C codes aren't different from C and C; they are tolerated for completeness' sake. =head2 Unpacking a Stack Frame Requesting a particular byte ordering may be necessary when you work with binary data coming from some specific architecture whereas your program could run on a totally different system. As an example, assume you have 24 bytes containing a stack frame as it happens on an Intel 8086: +---------+ +----+----+ +---------+ TOS: | IP | TOS+4:| FL | FH | FLAGS TOS+14:| SI | +---------+ +----+----+ +---------+ | CS | | AL | AH | AX | DI | +---------+ +----+----+ +---------+ | BL | BH | BX | BP | +----+----+ +---------+ | CL | CH | CX | DS | +----+----+ +---------+ | DL | DH | DX | ES | +----+----+ +---------+ First, we note that this time-honored 16-bit CPU uses little-endian order, and that's why the low order byte is stored at the lower address. To unpack such a (unsigned) short we'll have to use code C. A repeat count unpacks all 12 shorts: my( $ip, $cs, $flags, $ax, $bx, $cx, $dx, $si, $di, $bp, $ds, $es ) = unpack( 'v12', $frame ); Alternatively, we could have used C to unpack the individually accessible byte registers FL, FH, AL, AH, etc.: my( $fl, $fh, $al, $ah, $bl, $bh, $cl, $ch, $dl, $dh ) = unpack( 'C10', substr( $frame, 4, 10 ) ); It would be nice if we could do this in one fell swoop: unpack a short, back up a little, and then unpack 2 bytes. Since Perl I nice, it proffers the template code C to back up one byte. Putting this all together, we may now write: my( $ip, $cs, $flags,$fl,$fh, $ax,$al,$ah, $bx,$bl,$bh, $cx,$cl,$ch, $dx,$dl,$dh, $si, $di, $bp, $ds, $es ) = unpack( 'v2' . ('vXXCC' x 5) . 'v5', $frame ); (The clumsy construction of the template can be avoided - just read on!) We've taken some pains to construct the template so that it matches the contents of our frame buffer. Otherwise we'd either get undefined values, or C could not unpack all. If C runs out of items, it will supply null strings (which are coerced into zeroes whenever the pack code says so). =head2 How to Eat an Egg on a Net The pack code for big-endian (high order byte at the lowest address) is C for 16 bit and C for 32 bit integers. You use these codes if you know that your data comes from a compliant architecture, but, surprisingly enough, you should also use these pack codes if you exchange binary data, across the network, with some system that you know next to nothing about. The simple reason is that this order has been chosen as the I, and all standard-fearing programs ought to follow this convention. (This is, of course, a stern backing for one of the Lilliputian parties and may well influence the political development there.) So, if the protocol expects you to send a message by sending the length first, followed by just so many bytes, you could write: my $buf = pack( 'N', length( $msg ) ) . $msg; or even: my $buf = pack( 'NA*', length( $msg ), $msg ); and pass C<$buf> to your send routine. Some protocols demand that the count should include the length of the count itself: then just add 4 to the data length. (But make sure to read L before you really code this!) =head2 Byte-order modifiers In the previous sections we've learned how to use C, C, C and C to pack and unpack integers with big- or little-endian byte-order. While this is nice, it's still rather limited because it leaves out all kinds of signed integers as well as 64-bit integers. For example, if you wanted to unpack a sequence of signed big-endian 16-bit integers in a platform-independent way, you would have to write: my @data = unpack 's*', pack 'S*', unpack 'n*', $buf; This is ugly. As of Perl 5.9.2, there's a much nicer way to express your desire for a certain byte-order: the C> and C> modifiers. C> is the big-endian modifier, while C> is the little-endian modifier. Using them, we could rewrite the above code as: my @data = unpack 's>*', $buf; As you can see, the "big end" of the arrow touches the C, which is a nice way to remember that C> is the big-endian modifier. The same obviously works for C>, where the "little end" touches the code. You will probably find these modifiers even more useful if you have to deal with big- or little-endian C structures. Be sure to read L for more on that. =head2 Floating point Numbers For packing floating point numbers you have the choice between the pack codes C, C, C and C. C and C pack into (or unpack from) single-precision or double-precision representation as it is provided by your system. If your system supports it, C can be used to pack and unpack (C) values, which can offer even more resolution than C or C. B C packs an C, which is the floating point type used by Perl internally. There is no such thing as a network representation for reals, so if you want to send your real numbers across computer boundaries, you'd better stick to text representation, possibly using the hexadecimal float format (avoiding the decimal conversion loss), unless you're absolutely sure what's on the other end of the line. For the even more adventuresome, you can use the byte-order modifiers from the previous section also on floating point codes. =head1 Exotic Templates =head2 Bit Strings Bits are the atoms in the memory world. Access to individual bits may have to be used either as a last resort or because it is the most convenient way to handle your data. Bit string (un)packing converts between strings containing a series of C<0> and C<1> characters and a sequence of bytes each containing a group of 8 bits. This is almost as simple as it sounds, except that there are two ways the contents of a byte may be written as a bit string. Let's have a look at an annotated byte: 7 6 5 4 3 2 1 0 +-----------------+ | 1 0 0 0 1 1 0 0 | +-----------------+ MSB LSB It's egg-eating all over again: Some think that as a bit string this should be written "10001100" i.e. beginning with the most significant bit, others insist on "00110001". Well, Perl isn't biased, so that's why we have two bit string codes: $byte = pack( 'B8', '10001100' ); # start with MSB $byte = pack( 'b8', '00110001' ); # start with LSB It is not possible to pack or unpack bit fields - just integral bytes. C always starts at the next byte boundary and "rounds up" to the next multiple of 8 by adding zero bits as required. (If you do want bit fields, there is L. Or you could implement bit field handling at the character string level, using split, substr, and concatenation on unpacked bit strings.) To illustrate unpacking for bit strings, we'll decompose a simple status register (a "-" stands for a "reserved" bit): +-----------------+-----------------+ | S Z - A - P - C | - - - - O D I T | +-----------------+-----------------+ MSB LSB MSB LSB Converting these two bytes to a string can be done with the unpack template C<'b16'>. To obtain the individual bit values from the bit string we use C with the "empty" separator pattern which dissects into individual characters. Bit values from the "reserved" positions are simply assigned to C, a convenient notation for "I don't care where this goes". ($carry, undef, $parity, undef, $auxcarry, undef, $zero, $sign, $trace, $interrupt, $direction, $overflow) = split( //, unpack( 'b16', $status ) ); We could have used an unpack template C<'b12'> just as well, since the last 4 bits can be ignored anyway. =head2 Uuencoding Another odd-man-out in the template alphabet is C, which packs a "uuencoded string". ("uu" is short for Unix-to-Unix.) Chances are that you won't ever need this encoding technique which was invented to overcome the shortcomings of old-fashioned transmission mediums that do not support other than simple ASCII data. The essential recipe is simple: Take three bytes, or 24 bits. Split them into 4 six-packs, adding a space (0x20) to each. Repeat until all of the data is blended. Fold groups of 4 bytes into lines no longer than 60 and garnish them in front with the original byte count (incremented by 0x20) and a C<"\n"> at the end. - The C chef will prepare this for you, a la minute, when you select pack code C on the menu: my $uubuf = pack( 'u', $bindat ); A repeat count after C sets the number of bytes to put into an uuencoded line, which is the maximum of 45 by default, but could be set to some (smaller) integer multiple of three. C simply ignores the repeat count. =head2 Doing Sums An even stranger template code is C<%>EIE. First, because it's used as a prefix to some other template code. Second, because it cannot be used in C at all, and third, in C, doesn't return the data as defined by the template code it precedes. Instead it'll give you an integer of I bits that is computed from the data value by doing sums. For numeric unpack codes, no big feat is achieved: my $buf = pack( 'iii', 100, 20, 3 ); print unpack( '%32i3', $buf ), "\n"; # prints 123 For string values, C<%> returns the sum of the byte values saving you the trouble of a sum loop with C and C: print unpack( '%32A*', "\x01\x10" ), "\n"; # prints 17 Although the C<%> code is documented as returning a "checksum": don't put your trust in such values! Even when applied to a small number of bytes, they won't guarantee a noticeable Hamming distance. In connection with C or C, C<%> simply adds bits, and this can be put to good use to count set bits efficiently: my $bitcount = unpack( '%32b*', $mask ); And an even parity bit can be determined like this: my $evenparity = unpack( '%1b*', $mask ); =head2 Unicode Unicode is a character set that can represent most characters in most of the world's languages, providing room for over one million different characters. Unicode 3.1 specifies 94,140 characters: The Basic Latin characters are assigned to the numbers 0 - 127. The Latin-1 Supplement with characters that are used in several European languages is in the next range, up to 255. After some more Latin extensions we find the character sets from languages using non-Roman alphabets, interspersed with a variety of symbol sets such as currency symbols, Zapf Dingbats or Braille. (You might want to visit L for a look at some of them - my personal favourites are Telugu and Kannada.) The Unicode character sets associates characters with integers. Encoding these numbers in an equal number of bytes would more than double the requirements for storing texts written in Latin alphabets. The UTF-8 encoding avoids this by storing the most common (from a western point of view) characters in a single byte while encoding the rarer ones in three or more bytes. Perl uses UTF-8, internally, for most Unicode strings. So what has this got to do with C? Well, if you want to compose a Unicode string (that is internally encoded as UTF-8), you can do so by using template code C. As an example, let's produce the Euro currency symbol (code number 0x20AC): $UTF8{Euro} = pack( 'U', 0x20AC ); # Equivalent to: $UTF8{Euro} = "\x{20ac}"; Inspecting C<$utf8{euro}> shows that it contains 3 bytes: "\xe2\x82\xac". However, it contains only 1 character, number 0x20AC. The round trip can be completed with C: $Unicode{Euro} = unpack( 'U', $UTF8{Euro} ); Unpacking using the C template code also works on UTF-8 encoded byte strings. Usually you'll want to pack or unpack UTF-8 strings: # pack and unpack the Hebrew alphabet my $alefbet = pack( 'U*', 0x05d0..0x05ea ); my @hebrew = unpack( 'U*', $utf ); Please note: in the general case, you're better off using L|Encode/decode> to decode a UTF-8 encoded byte string to a Perl Unicode string, and L|Encode/encode> to encode a Perl Unicode string to UTF-8 bytes. These functions provide means of handling invalid byte sequences and generally have a friendlier interface. =head2 Another Portable Binary Encoding The pack code C has been added to support a portable binary data encoding scheme that goes way beyond simple integers. (Details can be found at L, the Scarab project.) A BER (Binary Encoded Representation) compressed unsigned integer stores base 128 digits, most significant digit first, with as few digits as possible. Bit eight (the high bit) is set on each byte except the last. There is no size limit to BER encoding, but Perl won't go to extremes. my $berbuf = pack( 'w*', 1, 128, 128+1, 128*128+127 ); A hex dump of C<$berbuf>, with spaces inserted at the right places, shows 01 8100 8101 81807F. Since the last byte is always less than 128, C knows where to stop. =head1 Template Grouping Prior to Perl 5.8, repetitions of templates had to be made by C-multiplication of template strings. Now there is a better way as we may use the pack codes C<(> and C<)> combined with a repeat count. The C template from the Stack Frame example can simply be written like this: unpack( 'v2 (vXXCC)5 v5', $frame ) Let's explore this feature a little more. We'll begin with the equivalent of join( '', map( substr( $_, 0, 1 ), @str ) ) which returns a string consisting of the first character from each string. Using pack, we can write pack( '(A)'.@str, @str ) or, because a repeat count C<*> means "repeat as often as required", simply pack( '(A)*', @str ) (Note that the template C would only have packed C<$str[0]> in full length.) To pack dates stored as triplets ( day, month, year ) in an array C<@dates> into a sequence of byte, byte, short integer we can write $pd = pack( '(CCS)*', map( @$_, @dates ) ); To swap pairs of characters in a string (with even length) one could use several techniques. First, let's use C and C to skip forward and back: $s = pack( '(A)*', unpack( '(xAXXAx)*', $s ) ); We can also use C<@> to jump to an offset, with 0 being the position where we were when the last C<(> was encountered: $s = pack( '(A)*', unpack( '(@1A @0A @2)*', $s ) ); Finally, there is also an entirely different approach by unpacking big endian shorts and packing them in the reverse byte order: $s = pack( '(v)*', unpack( '(n)*', $s ); =head1 Lengths and Widths =head2 String Lengths In the previous section we've seen a network message that was constructed by prefixing the binary message length to the actual message. You'll find that packing a length followed by so many bytes of data is a frequently used recipe since appending a null byte won't work if a null byte may be part of the data. Here is an example where both techniques are used: after two null terminated strings with source and destination address, a Short Message (to a mobile phone) is sent after a length byte: my $msg = pack( 'Z*Z*CA*', $src, $dst, length( $sm ), $sm ); Unpacking this message can be done with the same template: ( $src, $dst, $len, $sm ) = unpack( 'Z*Z*CA*', $msg ); There's a subtle trap lurking in the offing: Adding another field after the Short Message (in variable C<$sm>) is all right when packing, but this cannot be unpacked naively: # pack a message my $msg = pack( 'Z*Z*CA*C', $src, $dst, length( $sm ), $sm, $prio ); # unpack fails - $prio remains undefined! ( $src, $dst, $len, $sm, $prio ) = unpack( 'Z*Z*CA*C', $msg ); The pack code C gobbles up all remaining bytes, and C<$prio> remains undefined! Before we let disappointment dampen the morale: Perl's got the trump card to make this trick too, just a little further up the sleeve. Watch this: # pack a message: ASCIIZ, ASCIIZ, length/string, byte my $msg = pack( 'Z* Z* C/A* C', $src, $dst, $sm, $prio ); # unpack ( $src, $dst, $sm, $prio ) = unpack( 'Z* Z* C/A* C', $msg ); Combining two pack codes with a slash (C) associates them with a single value from the argument list. In C, the length of the argument is taken and packed according to the first code while the argument itself is added after being converted with the template code after the slash. This saves us the trouble of inserting the C call, but it is in C where we really score: The value of the length byte marks the end of the string to be taken from the buffer. Since this combination doesn't make sense except when the second pack code isn't C, C or C, Perl won't let you. The pack code preceding C may be anything that's fit to represent a number: All the numeric binary pack codes, and even text codes such as C or C: # pack/unpack a string preceded by its length in ASCII my $buf = pack( 'A4/A*', "Humpty-Dumpty" ); # unpack $buf: '13 Humpty-Dumpty' my $txt = unpack( 'A4/A*', $buf ); C is not implemented in Perls before 5.6, so if your code is required to work on ancient Perls you'll need to C to get the length, then use it to make a new unpack string. For example # pack a message: ASCIIZ, ASCIIZ, length, string, byte # (5.005 compatible) my $msg = pack( 'Z* Z* C A* C', $src, $dst, length $sm, $sm, $prio ); # unpack ( undef, undef, $len) = unpack( 'Z* Z* C', $msg ); ($src, $dst, $sm, $prio) = unpack ( "Z* Z* x A$len C", $msg ); But that second C is rushing ahead. It isn't using a simple literal string for the template. So maybe we should introduce... =head2 Dynamic Templates So far, we've seen literals used as templates. If the list of pack items doesn't have fixed length, an expression constructing the template is required (whenever, for some reason, C<()*> cannot be used). Here's an example: To store named string values in a way that can be conveniently parsed by a C program, we create a sequence of names and null terminated ASCII strings, with C<=> between the name and the value, followed by an additional delimiting null byte. Here's how: my $env = pack( '(A*A*Z*)' . keys( %Env ) . 'C', map( { ( $_, '=', $Env{$_} ) } keys( %Env ) ), 0 ); Let's examine the cogs of this byte mill, one by one. There's the C