OC

Knowledge OS
登录 注册
全部话题 移民 创业 iOS Mac Objective-C Swift Android 招聘 求职

学习笔记TF060:图像语音结合,看图说话

清醒疯子
清醒疯子 发布于 2017年11月06日
无人欣赏。

斯坦福大学人工智能实验室李飞飞教授,实现人工智能3要素:语法(syntax)、语义(semantics)、推理(inference)。语言、视觉。通过语法(语言语法解析、视觉三维结构解析)和语义(语言语义、视觉特体动作含义)作模型输入训练数据,实现推理能力,训练学习能力应用到工作,从新数据推断结论。《The Syntax,Semantics and Inference Mechanism in Natureal Language》 http://www.aaai.org/Papers/Symposia/Fall/1996/FS-96-04/F昭和96年04月01日0.pdf 。

看图说话模型。输入一张图片,根据图像像给出描述图像内容自然语言,讲故事。翻译图像信息和文本信息。https://github.com/tensorflow/models/tree/master/research/im2txt 。

原理。编码器-解码器框架,图像编码成固定中间矢量,解码成自然语言描述。编码器Inception V3图像识别模型,解码器LSTM网络。{s0,s1,...,sn-1}字幕词,{wes0,wes1,...,wesn-1}对应词嵌入向量,LSTM输出{p1,p2,...,pn}句子下一词生成概率分布,{logp1(s1),logp2(s2),...,logpn(sn)}正确词每个步骤对数似然,总和取负数是模型最小化目标。

最佳实践。微软Microsoft COCO Caption数据集 http://mscoco.org/ 。Miscrosoft Common Objects in Context(COCO)数据集。超过30万张图片,200万个标记实体。对原COCO数据集33万张图片,用亚马逊Mechanical Turk服务,人工为每张图片生成至少5句标注,标注语句超过150万句。2014版本、2015版本。2014版本82783张图片,验证集40504张图片,测试集40775张图片。 TensorFlow-Slim图像分类库 https://github.com/tensorflow/models/tree/master/research/inception/inception/slim 。

构建模型。showandtell_model.py。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from im2txt.ops import image_embedding
from im2txt.ops import image_processing
from im2txt.ops import inputs as input_ops
class ShowAndTellModel(object):
 """Image-to-text implementation based on http://arxiv.org/abs/1411.4555.
 "Show and Tell: A Neural Image Caption Generator"
 Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan
 """
 def __init__(self, config, mode, train_inception=False):
 """Basic setup.
 Args:
 config: Object containing configuration parameters.
 mode: "train", "eval" or "inference".
 train_inception: Whether the inception submodel variables are trainable.
 """
 assert mode in ["train", "eval", "inference"]
 self.config = config
 self.mode = mode
 self.train_inception = train_inception
 # Reader for the input data.
 self.reader = tf.TFRecordReader()
 # To match the "Show and Tell" paper we initialize all variables with a
 # random uniform initializer.
 self.initializer = tf.random_uniform_initializer(
 minval=-self.config.initializer_scale,
 maxval=self.config.initializer_scale)
 # A float32 Tensor with shape [batch_size, height, width, channels].
 self.images = None
 # An int32 Tensor with shape [batch_size, padded_length].
 self.input_seqs = None
 # An int32 Tensor with shape [batch_size, padded_length].
 self.target_seqs = None
 # An int32 0/1 Tensor with shape [batch_size, padded_length].
 self.input_mask = None
 # A float32 Tensor with shape [batch_size, embedding_size].
 self.image_embeddings = None
 # A float32 Tensor with shape [batch_size, padded_length, embedding_size].
 self.seq_embeddings = None
 # A float32 scalar Tensor; the total loss for the trainer to optimize.
 self.total_loss = None
 # A float32 Tensor with shape [batch_size * padded_length].
 self.target_cross_entropy_losses = None
 # A float32 Tensor with shape [batch_size * padded_length].
 self.target_cross_entropy_loss_weights = None
 # Collection of variables from the inception submodel.
 self.inception_variables = []
 # Function to restore the inception submodel from checkpoint.
 self.init_fn = None
 # Global step Tensor.
 self.global_step = None
 def is_training(self):
 """Returns true if the model is built for training mode."""
 return self.mode == "train"
 def process_image(self, encoded_image, thread_id=0):
 """Decodes and processes an image string.
 Args:
 encoded_image: A scalar string Tensor; the encoded image.
 thread_id: Preprocessing thread id used to select the ordering of color
 distortions.
 Returns:
 A float32 Tensor of shape [height, width, 3]; the processed image.
 """
 return image_processing.process_image(encoded_image,
 is_training=self.is_training(),
 height=self.config.image_height,
 width=self.config.image_width,
 thread_id=thread_id,
 image_format=self.config.image_format)
 def build_inputs(self):
 """Input prefetching, preprocessing and batching.
 Outputs:
 self.images
 self.input_seqs
 self.target_seqs (training and eval only)
 self.input_mask (training and eval only)
 """
 if self.mode == "inference":
 # In inference mode, images and inputs are fed via placeholders.
 image_feed = tf.placeholder(dtype=tf.string, shape=[], name="image_feed")
 input_feed = tf.placeholder(dtype=tf.int64,
 shape=[None], # batch_size
 name="input_feed")
 # Process image and insert batch dimensions.
 images = tf.expand_dims(self.process_image(image_feed), 0)
 input_seqs = tf.expand_dims(input_feed, 1)
 # No target sequences or input mask in inference mode.
 target_seqs = None
 input_mask = None
 else:
 # Prefetch serialized SequenceExample protos.
 input_queue = input_ops.prefetch_input_data(
 self.reader,
 self.config.input_file_pattern,
 is_training=self.is_training(),
 batch_size=self.config.batch_size,
 values_per_shard=self.config.values_per_input_shard,
 input_queue_capacity_factor=self.config.input_queue_capacity_factor,
 num_reader_threads=self.config.num_input_reader_threads)
 # Image processing and random distortion. Split across multiple threads
 # with each thread applying a slightly different distortion.
 assert self.config.num_preprocess_threads % 2 == 0
 images_and_captions = []
 for thread_id in range(self.config.num_preprocess_threads):
 serialized_sequence_example = input_queue.dequeue()
 encoded_image, caption = input_ops.parse_sequence_example(
 serialized_sequence_example,
 image_feature=self.config.image_feature_name,
 caption_feature=self.config.caption_feature_name)
 image = self.process_image(encoded_image, thread_id=thread_id)
 images_and_captions.append([image, caption])
 # Batch inputs.
 queue_capacity = (2 * self.config.num_preprocess_threads *
 self.config.batch_size)
 images, input_seqs, target_seqs, input_mask = (
 input_ops.batch_with_dynamic_pad(images_and_captions,
 batch_size=self.config.batch_size,
 queue_capacity=queue_capacity))
 self.images = images
 self.input_seqs = input_seqs
 self.target_seqs = target_seqs
 self.input_mask = input_mask
 def build_image_embeddings(self):
 """Builds the image model subgraph and generates image embeddings.
 Inputs:
 self.images
 Outputs:
 self.image_embeddings
 """
 inception_output = image_embedding.inception_v3(
 self.images,
 trainable=self.train_inception,
 is_training=self.is_training())
 self.inception_variables = tf.get_collection(
 tf.GraphKeys.GLOBAL_VARIABLES, scope="InceptionV3")
 # Map inception output into embedding space.
 with tf.variable_scope("image_embedding") as scope:
 image_embeddings = tf.contrib.layers.fully_connected(
 inputs=inception_output,
 num_outputs=self.config.embedding_size,
 activation_fn=None,
 weights_initializer=self.initializer,
 biases_initializer=None,
 scope=scope)
 # Save the embedding size in the graph.
 tf.constant(self.config.embedding_size, name="embedding_size")
 self.image_embeddings = image_embeddings
 def build_seq_embeddings(self):
 """Builds the input sequence embeddings.
 Inputs:
 self.input_seqs
 Outputs:
 self.seq_embeddings
 """
 with tf.variable_scope("seq_embedding"), tf.device("/cpu:0"):
 embedding_map = tf.get_variable(
 name="map",
 shape=[self.config.vocab_size, self.config.embedding_size],
 initializer=self.initializer)
 seq_embeddings = tf.nn.embedding_lookup(embedding_map, self.input_seqs)
 self.seq_embeddings = seq_embeddings
 def build_model(self):
 """Builds the model.
 Inputs:
 self.image_embeddings
 self.seq_embeddings
 self.target_seqs (training and eval only)
 self.input_mask (training and eval only)
 Outputs:
 self.total_loss (training and eval only)
 self.target_cross_entropy_losses (training and eval only)
 self.target_cross_entropy_loss_weights (training and eval only)
 """
 # This LSTM cell has biases and outputs tanh(new_c) * sigmoid(o), but the
 # modified LSTM in the "Show and Tell" paper has no biases and outputs
 # new_c * sigmoid(o).
 lstm_cell = tf.contrib.rnn.BasicLSTMCell(
 num_units=self.config.num_lstm_units, state_is_tuple=True)
 if self.mode == "train":
 lstm_cell = tf.contrib.rnn.DropoutWrapper(
 lstm_cell,
 input_keep_prob=self.config.lstm_dropout_keep_prob,
 output_keep_prob=self.config.lstm_dropout_keep_prob)
 with tf.variable_scope("lstm", initializer=self.initializer) as lstm_scope:
 # Feed the image embeddings to set the initial LSTM state.
 zero_state = lstm_cell.zero_state(
 batch_size=self.image_embeddings.get_shape()[0], dtype=tf.float32)
 _, initial_state = lstm_cell(self.image_embeddings, zero_state)
 # Allow the LSTM variables to be reused.
 lstm_scope.reuse_variables()
 if self.mode == "inference":
 # In inference mode, use concatenated states for convenient feeding and
 # fetching.
 tf.concat(axis=1, values=initial_state, name="initial_state")
 # Placeholder for feeding a batch of concatenated states.
 state_feed = tf.placeholder(dtype=tf.float32,
 shape=[None, sum(lstm_cell.state_size)],
 name="state_feed")
 state_tuple = tf.split(value=state_feed, num_or_size_splits=2, axis=1)
 # Run a single LSTM step.
 lstm_outputs, state_tuple = lstm_cell(
 inputs=tf.squeeze(self.seq_embeddings, axis=[1]),
 state=state_tuple)
 # Concatentate the resulting state.
 tf.concat(axis=1, values=state_tuple, name="state")
 else:
 # Run the batch of sequence embeddings through the LSTM.
 sequence_length = tf.reduce_sum(self.input_mask, 1)
 lstm_outputs, _ = tf.nn.dynamic_rnn(cell=lstm_cell,
 inputs=self.seq_embeddings,
 sequence_length=sequence_length,
 initial_state=initial_state,
 dtype=tf.float32,
 scope=lstm_scope)
 # Stack batches vertically.
 lstm_outputs = tf.reshape(lstm_outputs, [-1, lstm_cell.output_size])
 with tf.variable_scope("logits") as logits_scope:
 logits = tf.contrib.layers.fully_connected(
 inputs=lstm_outputs,
 num_outputs=self.config.vocab_size,
 activation_fn=None,
 weights_initializer=self.initializer,
 scope=logits_scope)
 if self.mode == "inference":
 tf.nn.softmax(logits, name="softmax")
 else:
 targets = tf.reshape(self.target_seqs, [-1])
 weights = tf.to_float(tf.reshape(self.input_mask, [-1]))
 # Compute losses.
 losses = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=targets,
 logits=logits)
 batch_loss = tf.div(tf.reduce_sum(tf.multiply(losses, weights)),
 tf.reduce_sum(weights),
 name="batch_loss")
 tf.losses.add_loss(batch_loss)
 total_loss = tf.losses.get_total_loss()
 # Add summaries.
 tf.summary.scalar("losses/batch_loss", batch_loss)
 tf.summary.scalar("losses/total_loss", total_loss)
 for var in tf.trainable_variables():
 tf.summary.histogram("parameters/" + var.op.name, var)
 self.total_loss = total_loss
 self.target_cross_entropy_losses = losses # Used in evaluation.
 self.target_cross_entropy_loss_weights = weights # Used in evaluation.
 def setup_inception_initializer(self):
 """Sets up the function to restore inception variables from checkpoint."""
 if self.mode != "inference":
 # Restore inception variables only.
 saver = tf.train.Saver(self.inception_variables)
 def restore_fn(sess):
 tf.logging.info("Restoring Inception variables from checkpoint file %s",
 self.config.inception_checkpoint_file)
 saver.restore(sess, self.config.inception_checkpoint_file)
 self.init_fn = restore_fn
 def setup_global_step(self):
 """Sets up the global step Tensor."""
 global_step = tf.Variable(
 initial_value=0,
 name="global_step",
 trainable=False,
 collections=[tf.GraphKeys.GLOBAL_STEP, tf.GraphKeys.GLOBAL_VARIABLES])
 self.global_step = global_step
 def build(self):
 """Creates all ops for training and evaluation."""
 # 构建模型
 self.build_inputs() # 构建输入数据
 self.build_image_embeddings() # 采用Inception V3构建图像模型,输出图片嵌入向量
 self.build_seq_embeddings() # 构建输入序列embeddings
 self.build_model() # CNN、LSTM串联,构建完整模型
 self.setup_inception_initializer() # 载入Inception V3预训练模型
 self.setup_global_step() # 记录全局迭代次数

训练模型。train.py。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from im2txt import configuration
from im2txt import show_and_tell_model
FLAGS = tf.app.flags.FLAGS
tf.flags.DEFINE_string("input_file_pattern", "",
 "File pattern of sharded TFRecord input files.")
tf.flags.DEFINE_string("inception_checkpoint_file", "",
 "Path to a pretrained inception_v3 model.")
tf.flags.DEFINE_string("train_dir", "",
 "Directory for saving and loading model checkpoints.")
tf.flags.DEFINE_boolean("train_inception", False,
 "Whether to train inception submodel variables.")
tf.flags.DEFINE_integer("number_of_steps", 1000000, "Number of training steps.")
tf.flags.DEFINE_integer("log_every_n_steps", 1,
 "Frequency at which loss and global step are logged.")
tf.logging.set_verbosity(tf.logging.INFO)
def main(unused_argv):
 assert FLAGS.input_file_pattern, "--input_file_pattern is required"
 assert FLAGS.train_dir, "--train_dir is required"
 model_config = configuration.ModelConfig()
 model_config.input_file_pattern = FLAGS.input_file_pattern
 model_config.inception_checkpoint_file = FLAGS.inception_checkpoint_file
 training_config = configuration.TrainingConfig()
 # Create training directory.
 # 创建训练结果存储路径
 train_dir = FLAGS.train_dir
 if not tf.gfile.IsDirectory(train_dir):
 tf.logging.info("Creating training directory: %s", train_dir)
 tf.gfile.MakeDirs(train_dir)
 # Build the TensorFlow graph.
 # 建立TensorFlow数据流图
 g = tf.Graph()
 with g.as_default():
 # Build the model.
 # 构建模型
 model = show_and_tell_model.ShowAndTellModel(
 model_config, mode="train", train_inception=FLAGS.train_inception)
 model.build()
 # Set up the learning rate.
 # 定义学习率
 learning_rate_decay_fn = None
 if FLAGS.train_inception:
 learning_rate = tf.constant(training_config.train_inception_learning_rate)
 else:
 learning_rate = tf.constant(training_config.initial_learning_rate)
 if training_config.learning_rate_decay_factor > 0:
 num_batches_per_epoch = (training_config.num_examples_per_epoch /
 model_config.batch_size)
 decay_steps = int(num_batches_per_epoch *
 training_config.num_epochs_per_decay)
 def _learning_rate_decay_fn(learning_rate, global_step):
 return tf.train.exponential_decay(
 learning_rate,
 global_step,
 decay_steps=decay_steps,
 decay_rate=training_config.learning_rate_decay_factor,
 staircase=True)
 learning_rate_decay_fn = _learning_rate_decay_fn
 # Set up the training ops.
 # 定义训练操作
 train_op = tf.contrib.layers.optimize_loss(
 loss=model.total_loss,
 global_step=model.global_step,
 learning_rate=learning_rate,
 optimizer=training_config.optimizer,
 clip_gradients=training_config.clip_gradients,
 learning_rate_decay_fn=learning_rate_decay_fn)
 # Set up the Saver for saving and restoring model checkpoints.
 saver = tf.train.Saver(max_to_keep=training_config.max_checkpoints_to_keep)
 # Run training.
 # 训练
 tf.contrib.slim.learning.train(
 train_op,
 train_dir,
 log_every_n_steps=FLAGS.log_every_n_steps,
 graph=g,
 global_step=model.global_step,
 number_of_steps=FLAGS.number_of_steps,
 init_fn=model.init_fn,
 saver=saver)
if __name__ == "__main__":
 tf.app.run()

预测生成模型。run_inference.py。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import tensorflow as tf
from im2txt import configuration
from im2txt import inference_wrapper
from im2txt.inference_utils import caption_generator
from im2txt.inference_utils import vocabulary
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_string("checkpoint_path", "",
 "Model checkpoint file or directory containing a "
 "model checkpoint file.")
tf.flags.DEFINE_string("vocab_file", "", "Text file containing the vocabulary.")
tf.flags.DEFINE_string("input_files", "",
 "File pattern or comma-separated list of file patterns "
 "of image files.")
tf.logging.set_verbosity(tf.logging.INFO)
def main(_):
 # Build the inference graph.
 g = tf.Graph()
 with g.as_default():
 model = inference_wrapper.InferenceWrapper()
 restore_fn = model.build_graph_from_config(configuration.ModelConfig(),
 FLAGS.checkpoint_path)
 g.finalize()
 # Create the vocabulary.
 vocab = vocabulary.Vocabulary(FLAGS.vocab_file)
 filenames = []
 for file_pattern in FLAGS.input_files.split(","):
 filenames.extend(tf.gfile.Glob(file_pattern))
 tf.logging.info("Running caption generation on %d files matching %s",
 len(filenames), FLAGS.input_files)
 with tf.Session(graph=g) as sess:
 # Load the model from checkpoint.
 restore_fn(sess)
 # Prepare the caption generator. Here we are implicitly using the default
 # beam search parameters. See caption_generator.py for a description of the
 # available beam search parameters.
 generator = caption_generator.CaptionGenerator(model, vocab)
 for filename in filenames:
 with tf.gfile.GFile(filename, "r") as f:
 image = f.read()
 captions = generator.beam_search(sess, image)
 print("Captions for image %s:" % os.path.basename(filename))
 for i, caption in enumerate(captions):
 # Ignore begin and end words.
 sentence = [vocab.id_to_word(w) for w in caption.sentence[1:-1]]
 sentence = " ".join(sentence)
 print(" %d) %s (p=%f)" % (i, sentence, math.exp(caption.logprob)))
if __name__ == "__main__":
 tf.app.run()

参考资料: 《TensorFlow技术解析与实战》

欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

暂无回复
登录 或者 注册

AltStyle によって変換されたページ (->オリジナル) /