[フレーム]

Class: Matrix::LUPDecomposition

Inherits:
Object
  • Object
  • Matrix::LUPDecomposition
show all
Includes:
ConversionHelper
Defined in:
opal/stdlib/matrix/lup_decomposition.rb

Overview

For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit lower triangular matrix L, an n-by-n upper triangular matrix U, and a m-by-m permutation matrix P so that L*U = P*A. If m < n, then L is m-by-m and U is m-by-n.

The LUP decomposition with pivoting always exists, even if the matrix is singular, so the constructor will never fail. The primary use of the LU decomposition is in the solution of square systems of simultaneous linear equations. This will fail if singular? returns true.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(a) ⇒ LUPDecomposition

Returns a new instance of LUPDecomposition.

Raises:

  • (TypeError)
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# File 'opal/stdlib/matrix/lup_decomposition.rb', line 154
def initialize a
 raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix )
 # Use a "left-looking", dot-product, Crout/Doolittle algorithm.
 @lu = a.to_a
 @row_count = a.row_count
 @column_count = a.column_count
 @pivots = Array .new(@row_count)
 @row_count.times do |i|
 @pivots[i] = i
 end
 @pivot_sign = 1
 lu_col_j = Array .new(@row_count)
 # Outer loop.

 @column_count.times do |j|
 # Make a copy of the j-th column to localize references.

 @row_count.times do |i|
 lu_col_j[i] = @lu[i][j]
 end
 # Apply previous transformations.

 @row_count.times do |i|
 lu_row_i = @lu[i]
 # Most of the time is spent in the following dot product.

 kmax = [i, j].min
 s = 0
 kmax.times do |k|
 s += lu_row_i[k]*lu_col_j[k]
 end
 lu_row_i[j] = lu_col_j[i] -= s
 end
 # Find pivot and exchange if necessary.

 p = j
 (j+1).upto(@row_count-1) do |i|
 if (lu_col_j[i].abs > lu_col_j[p].abs)
 p = i
 end
 end
 if (p != j)
 @column_count.times do |k|
 t = @lu[p][k]; @lu[p][k] = @lu[j][k]; @lu[j][k] = t
 end
 k = @pivots[p]; @pivots[p] = @pivots[j]; @pivots[j] = k
 @pivot_sign = -@pivot_sign
 end
 # Compute multipliers.

 if (j < @row_count && @lu[j][j] != 0)
 (j+1).upto(@row_count-1) do |i|
 @lu[i][j] = @lu[i][j].quo(@lu[j][j])
 end
 end
 end
end

Instance Attribute Details

#pivotsObject (readonly)

Returns the pivoting indices

63
64
65
# File 'opal/stdlib/matrix/lup_decomposition.rb', line 63
def pivots
 @pivots
end

Instance Method Details

#detObject Also known as: determinant

Returns the determinant of +A+, calculated efficiently from the factorization.

79
80
81
82
83
84
85
86
87
88
# File 'opal/stdlib/matrix/lup_decomposition.rb', line 79
def det
 if (@row_count != @column_count)
 Matrix .Raise Matrix ::ErrDimensionMismatch
 end
 d = @pivot_sign
 @column_count.times do |j|
 d *= @lu[j][j]
 end
 d
end

#lObject

22
23
24
25
26
27
28
29
30
31
32
# File 'opal/stdlib/matrix/lup_decomposition.rb', line 22
def l
 Matrix .build (@row_count, [@column_count, @row_count].min) do |i, j|
 if (i > j)
 @lu[i][j]
 elsif (i == j)
 1
 else
 0
 end
 end
end

#pObject

Returns the permutation matrix +P+

48
49
50
51
52
# File 'opal/stdlib/matrix/lup_decomposition.rb', line 48
def p
 rows = Array .new(@row_count){Array .new(@row_count, 0)}
 @pivots.each_with_index{|p, i| rows[i][p] = 1}
 Matrix .send :new, rows, @row_count
end

#singular?Boolean

Returns +true+ if +U+, and hence +A+, is singular.

Returns:

67
68
69
70
71
72
73
74
# File 'opal/stdlib/matrix/lup_decomposition.rb', line 67
def singular?
 @column_count.times do |j|
 if (@lu[j][j] == 0)
 return true
 end
 end
 false
end

#solve(b) ⇒ Object

Returns +m+ so that A*m = b, or equivalently so that L*U*m = P*b +b+ can be a Matrix or a Vector

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# File 'opal/stdlib/matrix/lup_decomposition.rb', line 95
def solve b
 if (singular?)
 Matrix .Raise Matrix ::ErrNotRegular, "Matrix is singular."
 end
 if b.is_a? Matrix 
 if (b.row_count != @row_count)
 Matrix .Raise Matrix ::ErrDimensionMismatch
 end
 # Copy right hand side with pivoting
 nx = b.column_count
 m = @pivots.map{|row| b.row(row).to_a}
 # Solve L*Y = P*b
 @column_count.times do |k|
 (k+1).upto(@column_count-1) do |i|
 nx.times do |j|
 m[i][j] -= m[k][j]*@lu[i][k]
 end
 end
 end
 # Solve U*m = Y
 (@column_count-1).downto(0) do |k|
 nx.times do |j|
 m[k][j] = m[k][j].quo(@lu[k][k])
 end
 k.times do |i|
 nx.times do |j|
 m[i][j] -= m[k][j]*@lu[i][k]
 end
 end
 end
 Matrix .send :new, m, nx
 else # same algorithm, specialized for simpler case of a vector
 b = convert_to_array(b)
 if (b.size != @row_count)
 Matrix .Raise Matrix ::ErrDimensionMismatch
 end
 # Copy right hand side with pivoting
 m = b.values_at(*@pivots)
 # Solve L*Y = P*b
 @column_count.times do |k|
 (k+1).upto(@column_count-1) do |i|
 m[i] -= m[k]*@lu[i][k]
 end
 end
 # Solve U*m = Y
 (@column_count-1).downto(0) do |k|
 m[k] = m[k].quo(@lu[k][k])
 k.times do |i|
 m[i] -= m[k]*@lu[i][k]
 end
 end
 Vector .elements (m, false)
 end
end

#to_aryObject Also known as: to_a

Returns +L+, +U+, +P+ in an array

56
57
58
# File 'opal/stdlib/matrix/lup_decomposition.rb', line 56
def to_ary
 [l, u, p]
end

#uObject

Returns the upper triangular factor +U+

36
37
38
39
40
41
42
43
44
# File 'opal/stdlib/matrix/lup_decomposition.rb', line 36
def u
 Matrix .build ([@column_count, @row_count].min, @column_count) do |i, j|
 if (i <= j)
 @lu[i][j]
 else
 0
 end
 end
end

AltStyle によって変換されたページ (->オリジナル) /