Note
Go to the end to download the full example code.
Plot sensor denoising using oversampled temporal projection#
This demonstrates denoising using the OTP algorithm [1] on data with with sensor artifacts (flux jumps) and random noise.
# Author: Eric Larson <larson.eric.d@gmail.com> # # License: BSD-3-Clause # Copyright the MNE-Python contributors.
importnumpyasnp importmne frommneimport find_events , fit_dipole frommne.datasets.brainstormimport bst_phantom_elekta frommne.ioimport read_raw_fif print(__doc__)
Plot the phantom data, lowpassed to get rid of high-frequency artifacts. We also crop to a single 10-second segment for speed. Notice that there are two large flux jumps on channel 1522 that could spread to other channels when performing subsequent spatial operations (e.g., Maxwell filtering, SSP, or ICA).
Opening raw data file /home/circleci/mne_data/MNE-brainstorm-data/bst_phantom_elekta/kojak_all_200nAm_pp_no_chpi_no_ms_raw.fif... Read a total of 13 projection items: planar-0.0-115.0-PCA-01 (1 x 306) idle planar-0.0-115.0-PCA-02 (1 x 306) idle planar-0.0-115.0-PCA-03 (1 x 306) idle planar-0.0-115.0-PCA-04 (1 x 306) idle planar-0.0-115.0-PCA-05 (1 x 306) idle axial-0.0-115.0-PCA-01 (1 x 306) idle axial-0.0-115.0-PCA-02 (1 x 306) idle axial-0.0-115.0-PCA-03 (1 x 306) idle axial-0.0-115.0-PCA-04 (1 x 306) idle axial-0.0-115.0-PCA-05 (1 x 306) idle axial-0.0-115.0-PCA-06 (1 x 306) idle axial-0.0-115.0-PCA-07 (1 x 306) idle axial-0.0-115.0-PCA-08 (1 x 306) idle Range : 47000 ... 437999 = 47.000 ... 437.999 secs Ready. Reading 0 ... 10000 = 0.000 ... 10.000 secs... Filtering raw data in 1 contiguous segment Setting up low-pass filter at 40 Hz FIR filter parameters --------------------- Designing a one-pass, zero-phase, non-causal lowpass filter: - Windowed time-domain design (firwin) method - Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation - Upper passband edge: 40.00 Hz - Upper transition bandwidth: 10.00 Hz (-6 dB cutoff frequency: 45.00 Hz) - Filter length: 331 samples (0.331 s)
Now we can clean the data with OTP, lowpass, and plot. The flux jumps have been suppressed alongside the random sensor noise.
raw_clean = mne.preprocessing.oversampled_temporal_projection (raw ) raw_clean.filter (0.0, 40.0) raw_clean.plot (order =order , n_channels=10)
Processing MEG data using oversampled temporal projection Processing 1 data chunk of (at least) 10.0 s with 5.0 s overlap and hann windowing The final 0.001 s will be lumped into the final window Denoising 0.00 – 10.00 s Denoising 10.00 – 10.00 s Filtering raw data in 1 contiguous segment Setting up low-pass filter at 40 Hz FIR filter parameters --------------------- Designing a one-pass, zero-phase, non-causal lowpass filter: - Windowed time-domain design (firwin) method - Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation - Upper passband edge: 40.00 Hz - Upper transition bandwidth: 10.00 Hz (-6 dB cutoff frequency: 45.00 Hz) - Filter length: 331 samples (0.331 s)
We can also look at the effect on single-trial phantom localization. See the Brainstorm Elekta phantom dataset tutorial for more information. Here we use a version that does single-trial localization across the 17 trials are in our 10-second window:
defcompute_bias(raw ): events = find_events (raw , "STI201", verbose=False) events = events[1:] # first one has an artifact tmin, tmax = -0.2, 0.1 epochs = mne.Epochs ( raw , events, dipole_number , tmin, tmax, baseline=(None, -0.01), preload=True, verbose=False, ) sphere = mne.make_sphere_model (r0=(0.0, 0.0, 0.0), head_radius=None, verbose=False) cov = mne.compute_covariance (epochs, tmax=0, method="oas", rank=None, verbose=False) idx = epochs.time_as_index(0.036)[0] data = epochs.get_data(copy=False)[:, :, idx].T evoked = mne.EvokedArray (data, epochs.info, tmin=0.0) dip = fit_dipole (evoked, cov, sphere, verbose=False)[0] actual_pos = mne.dipole.get_phantom_dipoles ()[0][dipole_number - 1] misses = 1000 * np.linalg.norm (dip.pos - actual_pos, axis=-1) return misses bias = compute_bias(raw ) print(f"Raw bias: {np.mean (bias ):0.1f}mm (worst: {np.max (bias ):0.1f}mm)") bias_clean = compute_bias(raw_clean ) print(f"OTP bias: {np.mean (bias_clean ):0.1f}mm (worst: {np.max (bias_clean ):0.1f}m)")
Raw bias: 2.5mm (worst: 5.1mm) OTP bias: 1.2mm (worst: 1.3m)
References#
Total running time of the script: (0 minutes 24.101 seconds)