TOPICS
Search

h-Statistic


The h-statistic h_r is the unique symmetric unbiased estimator for a central moment of a distribution

<h_r>=mu_r.
(1)

In addition, the variance

var(h_r)=<(h_r-mu_r)^2>
(2)

is a minimum compared to all other unbiased estimators (Halmos 1946; Rose and Smith 2002, p. 254). The first few are given in terms of power sums by

and in terms of sample central moments by

h_1 =
(7)
h_2 = (nm_2)/(n-1)
(8)

These can be given by HStatistic[r] and HStatisticToSampleCentral[r], respectively, in the Wolfram Language application package mathStatica.


See also

Central Moment, k-Statistic, Polyache

Explore with Wolfram|Alpha

References

Dwyer, P. S. "Moments of Any Rational Integral Isobaric Sample Moment Function." Ann. Math. Stat. 8, 21-65, 1937.Halmos, P. R. "The Theory of Unbiased Estimation." Ann. Math. Stat. 17, 34-43, 1946.Rose, C. and Smith, M. D. "h-Statistics: Unbiased Estimators of Central Moments." §7.2B in Mathematical Statistics with Mathematica. New York: Springer-Verlag, pp. 253-256, 2002.

Referenced on Wolfram|Alpha

h-Statistic

Cite this as:

Weisstein, Eric W. "h-Statistic." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/h-Statistic.html

Subject classifications

AltStyle によって変換されたページ (->オリジナル) /