Tribonacci Constant
The tribonacci constant is ratio to which adjacent tribonacci numbers tend, and is given by
t = (x^3-x^2-x-1)_1
(1)
= 1/3(1+RadicalBox[{19, -, 3, {sqrt(, 33, )}}, 3]+RadicalBox[{19, +, 3, {sqrt(, 33, )}}, 3])
(2)
= 1.83929...
(3)
(OEIS A058265).
The tribonacci constant satisfies the identities
(t+1)(t-1)^2 = 2
(4)
t+t^(-3) = 2
(5)
[画像:((t-1)(t^2+1))/t] = 2
(6)
[画像:((t+1)^2)/(t(t^2+1))] = 1
(7)
(P. Moses, pers. comm., Feb. 21, 2005).
The tribonacci constant is extremely prominent in the properties of the snub cube.
See also
Hard Hexagon Entropy Constant, Snub Cube, Tetranacci Constant, Tribonacci NumberExplore with Wolfram|Alpha
WolframAlpha
More things to try:
References
Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, p. 9, 2003.Pegg, E. Jr. "Shattering the Plane with Twelve New Substitution Tilings Using 2, phi, psi, chi, rho." Mar. 7, 2019. https://blog.wolfram.com/2019/03/07/shattering-the-plane-with-twelve-new-substitution-tilings-using-2-phi-psi-chi-rho/.Sloane, N. J. A. Sequence A058265 in "The On-Line Encyclopedia of Integer Sequences."Referenced on Wolfram|Alpha
Tribonacci ConstantCite this as:
Weisstein, Eric W. "Tribonacci Constant." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/TribonacciConstant.html