Suborder Function
The multiplicative suborder of a number a (mod n) is the least exponent e>0 such that a^e=+/-1 (mod n), or zero if no such e exists. An e always exists if GCD(a,n)=1 and n>1.
This function is denoted sord_n(a) and can be implemented in the Wolfram Language as:
Suborder[a_,n_] := If[n>1&& GCD[a,n] == 1,
Min[MultiplicativeOrder[a, n, {-1, 1}]],
0
]
The following table summarizes sord_n(a) for small values of a and n.
See also
Multiplicative OrderThis entry contributed by Tony Noe
Explore with Wolfram|Alpha
WolframAlpha
More things to try:
References
Sloane, N. J. A. Sequences A103489 and A103491 in "The On-Line Encyclopedia of Integer Sequences."Wolfram, S.; Martin, O.; and Odlyzko, A. M. "Algebraic Properties of Cellular Automata." Comm. Math. Phys. 93, 219-258, 1984.Referenced on Wolfram|Alpha
Suborder FunctionCite this as:
Noe, Tony. "Suborder Function." From MathWorld--A Wolfram Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/SuborderFunction.html