Schur-Jabotinsky Theorem
Let P=a_1x+a_2x^2+... be an almost unit in the integral domain of formal power series (with a_1!=0) and define
for k=+/-1, +/-2, .... If Q=P^(-1), then for all positive integers m,
where
| b_n^((m))=m/na_(-m)^((-n)) |
(3)
|
for n>=m.
See also
Lagrange Inversion TheoremExplore with Wolfram|Alpha
WolframAlpha
More things to try:
References
Henrici, P. Applied and Computational Complex Analysis, Vol. 1: Power Series-Integration-Conformal Mapping-Location of Zeros. New York: Wiley, pp. 55-56, 1988.Referenced on Wolfram|Alpha
Schur-Jabotinsky TheoremCite this as:
Weisstein, Eric W. "Schur-Jabotinsky Theorem." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/Schur-JabotinskyTheorem.html