Probability Density Function
The probability density function (PDF) P(x) of a continuous distribution is defined as the derivative of the (cumulative) distribution function D(x),
so
A probability function satisfies
| [画像: P(x in B)=int_BP(x)dx ] |
(6)
|
and is constrained by the normalization condition,
Special cases are
To find the probability function in a set of transformed variables, find the Jacobian. For example, If u=u(x), then
| P_udu=P_xdx, |
(14)
|
so
Similarly, if u=u(x,y) and v=v(x,y), then
Given n probability functions P_1(x), P_2(y), ..., P_n(z), the sum distribution X+Y+...+Z has probability function
| P(t)=intintP_1(x)P_2(y)...P_n(z)delta((x+y+...+z)-t)dxdy...dz, |
(17)
|
where delta(x) is a delta function. Similarly, the probability function for the distribution of XY...Z is given by
| P(t)=intintP_1(x)P_2(y)...P_n(z)delta(xy...z-t)dxdy...dz. |
(18)
|
The difference distribution X-Y has probability function
and the ratio distribution X/Y has probability function
Given the moments of a distribution (mu, sigma, and the gamma statistics gamma_r), the asymptotic probability function is given by
| P(x)=Z(x)-[1/6gamma_1Z^((3))(x)]+[1/(24)gamma_2Z^((4))(x)+1/(72)gamma_1^2Z^((6))(x)]-[1/(120)gamma_3Z^((5))(x)+1/(144)gamma_1gamma_2Z^((7))(x)+1/(1296)gamma_1^3Z^((9))(x)]+[1/(720)gamma_4Z^((6))(x)+(1/(1152)gamma_2^2+1/(720)gamma_1gamma_3)Z^((8))(x)+1/(1728)gamma_1^2gamma_2Z^((10))(x)+1/(31104)gamma_1^4Z^((12))(x)]+..., |
(21)
|
where
is the normal distribution, and
for r>=1 (with kappa_r cumulants and sigma the standard deviation; Abramowitz and Stegun 1972, p. 935).
See also
Continuous Distribution, Cornish-Fisher Asymptotic Expansion, Discrete Distribution, Distribution Function, Joint Distribution Function, Ratio DistributionExplore with Wolfram|Alpha
More things to try:
References
Abramowitz, M. and Stegun, I. A. (Eds.). "Probability Functions." Ch. 26 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 925-964, 1972.Evans, M.; Hastings, N.; and Peacock, B. "Probability Density Function and Probability Function." §2.4 in Statistical Distributions, 3rd ed. New York: Wiley, pp. 9-11, 2000.McLaughlin, M. "Common Probability Distributions." http://www.geocities.com/~mikemclaughlin/math_stat/Dists/Compendium.html.Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, p. 94, 1984.Referenced on Wolfram|Alpha
Probability Density FunctionCite this as:
Weisstein, Eric W. "Probability Density Function." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/ProbabilityDensityFunction.html