TOPICS
Search

Polygon Circumscribing


PolygonCircumscribing

Circumscribe a triangle about a circle, another circle around the triangle, a square outside the circle, another circle outside the square, and so on. The circumradius and inradius for an n-gon are then related by

so an infinitely nested set of circumscribed polygons and circles has

Kasner and Newman (1989) and Haber (1964) state that K=12, but this is incorrect, and the actual answer is

K=8.700036625...
(5)

(OEIS A051762).

By writing

it is possible to expand the series about infinity, change the order of summation, do the n sum symbolically, and obtain the quickly converging series

where zeta(s) is the Riemann zeta function.

Bouwkamp (1965) produced the following infinite product formulas for the constant,

where sinc(x) is the sinc function (cf. Prudnikov et al. 1986, p. 757), zeta(x) is the Riemann zeta function, and lambda(x)=(1-2^(-x))zeta(x) is the Dirichlet lambda function. Bouwkamp (1965) also produced the formula with accelerated convergence

K=1/(12)sqrt(6)pi^4(1-1/2pi^2+1/(24)pi^4)(1-1/8pi^2+1/(384)pi^4)csc((pi^2)/(sqrt(6+2sqrt(3))))csc((pi^2)/(sqrt(6-2sqrt(3))))B,
(11)

where

(cited in Pickover 1995).


See also

Infinite Product, Nested Polygon, Polygon Inscribing, Whirl

Explore with Wolfram|Alpha

References

Bouwkamp, C. "An Infinite Product." Indag. Math. 27, 40-46, 1965.Chatterji, M. "Product[Cos[Pi/n], n,3,infinity]." http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap102.html.Finch, S. R. "Kepler-Bouwkamp Constant." §6.3 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 428-429, 2003.Haber, H. "Das Mathematische Kabinett." Bild der Wissenschaft 2, 73, Apr. 1964.Hamming, R. W. Numerical Methods for Scientists and Engineers, 2nd ed. New York: Dover, pp. 193-194, 1986.Kasner, E. and Newman, J. R. Mathematics and the Imagination. Redmond, WA: Microsoft Press, pp. 311-312, 1989.Pappas, T. "Infinity & Limits." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 180, 1989.Pickover, C. A. "Infinitely Exploding Circles." Ch. 18 in Keys to Infinity. New York: W. H. Freeman, pp. 147-151, 1995.Pinkham, R. S. "Mathematics and Modern Technology." Amer. Math. Monthly 103, 539-545, 1996.Prudnikov, A. P.; Brychkov, Yu. A.; and Marichev, O. I. Integrals and Series, Vol. 1: Elementary Functions. New York: Gordon & Breach, 1986.Sloane, N. J. A. Sequence A051762 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Polygon Circumscribing

Cite this as:

Weisstein, Eric W. "Polygon Circumscribing." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/PolygonCircumscribing.html

Subject classifications

AltStyle によって変換されたページ (->オリジナル) /