Polygon Circumscribing
Circumscribe a triangle about a circle, another circle around the triangle, a square outside the circle, another circle outside the square, and so on. The circumradius and inradius for an n-gon are then related by
| [画像: r=Rcos(pi/n), ] |
(1)
|
so an infinitely nested set of circumscribed polygons and circles has
Kasner and Newman (1989) and Haber (1964) state that K=12, but this is incorrect, and the actual answer is
| K=8.700036625... |
(5)
|
(OEIS A051762).
By writing
it is possible to expand the series about infinity, change the order of summation, do the n sum symbolically, and obtain the quickly converging series
where zeta(s) is the Riemann zeta function.
Bouwkamp (1965) produced the following infinite product formulas for the constant,
where sinc(x) is the sinc function (cf. Prudnikov et al. 1986, p. 757), zeta(x) is the Riemann zeta function, and lambda(x)=(1-2^(-x))zeta(x) is the Dirichlet lambda function. Bouwkamp (1965) also produced the formula with accelerated convergence
| K=1/(12)sqrt(6)pi^4(1-1/2pi^2+1/(24)pi^4)(1-1/8pi^2+1/(384)pi^4)csc((pi^2)/(sqrt(6+2sqrt(3))))csc((pi^2)/(sqrt(6-2sqrt(3))))B, |
(11)
|
where
(cited in Pickover 1995).
See also
Infinite Product, Nested Polygon, Polygon Inscribing, WhirlExplore with Wolfram|Alpha
More things to try:
References
Bouwkamp, C. "An Infinite Product." Indag. Math. 27, 40-46, 1965.Chatterji, M. "Product[Cos[Pi/n], n,3,infinity]." http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap102.html.Finch, S. R. "Kepler-Bouwkamp Constant." §6.3 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 428-429, 2003.Haber, H. "Das Mathematische Kabinett." Bild der Wissenschaft 2, 73, Apr. 1964.Hamming, R. W. Numerical Methods for Scientists and Engineers, 2nd ed. New York: Dover, pp. 193-194, 1986.Kasner, E. and Newman, J. R. Mathematics and the Imagination. Redmond, WA: Microsoft Press, pp. 311-312, 1989.Pappas, T. "Infinity & Limits." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 180, 1989.Pickover, C. A. "Infinitely Exploding Circles." Ch. 18 in Keys to Infinity. New York: W. H. Freeman, pp. 147-151, 1995.Pinkham, R. S. "Mathematics and Modern Technology." Amer. Math. Monthly 103, 539-545, 1996.Prudnikov, A. P.; Brychkov, Yu. A.; and Marichev, O. I. Integrals and Series, Vol. 1: Elementary Functions. New York: Gordon & Breach, 1986.Sloane, N. J. A. Sequence A051762 in "The On-Line Encyclopedia of Integer Sequences."Referenced on Wolfram|Alpha
Polygon CircumscribingCite this as:
Weisstein, Eric W. "Polygon Circumscribing." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/PolygonCircumscribing.html