TOPICS
Search

Poisson Kernel


The integral kernel in the Poisson integral, given by

for the open unit disk D(0,1). Writing z_0=re^(itheta) and taking D(0,R) gives

(Krantz 1999, p. 93).

In three dimensions,

where a=|y| and

The Poisson kernel for the n-ball is

where D_(n) is the outward normal derivative at point z on a unit n-sphere and

Let u be harmonic on a neighborhood of the closed unit disk D^_(0,1), then the reproducing property of the Poisson kernel states that for z in D(0,1),

(Krantz 1999, p. 94).


See also

Dirichlet Problem, Harmonic Function, Mean-Value Property, Poisson Integral

Explore with Wolfram|Alpha

WolframAlpha

References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1090, 2000.Krantz, S. G. "The Poisson Kernel." §7.3.2 in Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 93, 1999.

Referenced on Wolfram|Alpha

Poisson Kernel

Cite this as:

Weisstein, Eric W. "Poisson Kernel." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/PoissonKernel.html

Subject classifications

AltStyle によって変換されたページ (->オリジナル) /