Jacobsthal Number
The Jacobsthal numbers are the numbers obtained by the U_ns in the Lucas sequence with P=1 and Q=-2, corresponding to a=2 and b=-1. They and the Jacobsthal-Lucas numbers (the V_ns) satisfy the recurrence relation
| J_n=J_(n-1)+2J_(n-2). |
(1)
|
The Jacobsthal numbers satisfy J_0=0 and J_1=1 and are 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, ... (OEIS A001045). The Jacobsthal-Lucas numbers satisfy j_0=2 and j_1=1 and are 2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, ... (OEIS A014551). The properties of these numbers are summarized in Horadam (1996).
Microcontrollers (and other computers) use conditional instructions to change the flow of execution of a program. In addition to branch instructions, some microcontrollers use skip instructions which conditionally bypass the next instruction. This winds up being useful for one case out of the four possibilities on 2 bits, 3 cases on 3 bits, 5 cases on 4 bits, 11 on 5 bits, 21 on 6 bits, 43 on 7 bits, 85 on 8 bits, ..., which are exactly the Jacobsthal numbers (Hirst 2006).
The Jacobsthal and Jacobsthal-Lucas numbers are given by the closed form expressions
where |_x_| is the floor function and (n; k) is a binomial coefficient. The Binet forms are
Amazingly, when interpreted in binary, the Jacobsthal numbers J_(n+2) give the nth iteration of applying the rule 28 cellular automaton to initial conditions consisting of a single black cell (E. W. Weisstein, Apr. 12, 2006).
The generating functions are
The Simson formulas are
Summation formulas include
Interrelationships are
| j_nJ_n=J_(2n) |
(14)
|
| j_n=J_(n+1)+2J_(n-1) |
(15)
|
| 9J_n=j_(n+1)+2j_(n-1) |
(16)
|
| j_(n+1)+j_n=3(J_(n+1)+J_n)=3·2^n |
(17)
|
| j_(n+1)-j_n=3(J_(n+1)-J_n)+4(-1)^(n+1)=2^n+2(-1)^(n+1) |
(18)
|
| j_(n+1)-2j_n=3(2J_n-J_(n+1))=3(-1)^(n+1) |
(19)
|
| 2j_(n+1)+j_(n-1)=3(2J_(n+1)+J_(n-1))+6(-1)^(n+1) |
(20)
|
| j_(n+r)-j_(n-r)=3(J_(n+r)-J_(n-r))=2^(n-r)(2^(2r)-1) |
(23)
|
| j_n=3J_n+2(-1)^n |
(24)
|
| 3J_n+j_n=2^(n+1) |
(25)
|
| J_n+j_n=2J_(n+1) |
(26)
|
| j_(n+2)j_(n-2)-j_n^2=-9(J_(n+2)J_(n-2)-J_n)^2=9(-1)^n2^(n-2) |
(27)
|
| J_mj_n+J_nj_m=2J_(m+n) |
(28)
|
| j_mj_n+9J_mJ_n=2j_(m+n) |
(29)
|
| j_n^2+9J_n^2=2j_(2n) |
(30)
|
| J_mj_n-J_nj_m=(-1)^n2^(n+1)J_(m-n) |
(31)
|
| j_mj_n-9J_mJ_n=(-1)^n2^(n+1)j_(m-n) |
(32)
|
| j_n^2-9J_n^2=(-1)^n2^(n+2) |
(33)
|
(Horadam 1996).
See also
Jacobsthal-Lucas Polynomial, Jacobsthal Polynomial, Rule 28Explore with Wolfram|Alpha
More things to try:
References
Bergum, G. E.; Bennett, L.; Horadam, A. F.; and Moore, S. D. "Jacobsthal Polynomials and a Conjecture Concerning Fibonacci-Like Matrices." Fib. Quart. 23, 240-248, 1985.Hirst, C. "Hopscotch--Multiple Bit Testing." May 15, 2006. http://www.avrfreaks.net/index.php?module=FreaksAcademy&func=viewItem&item_id=229&item_type=project.Horadam, A. F. "Jacobsthal and Pell Curves." Fib. Quart. 26, 79-83, 1988.Horadam, A. F. "Jacobsthal Representation Numbers." Fib. Quart. 34, 40-54, 1996.Sloane, N. J. A. Sequences A001045/M2482 and A014551 in "The On-Line Encyclopedia of Integer Sequences."Hoggatt and Bicknell, in ÒConvolution Triangles,Ó FQ 10 (1972), 599-608),Referenced on Wolfram|Alpha
Jacobsthal NumberCite this as:
Weisstein, Eric W. "Jacobsthal Number." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/JacobsthalNumber.html