TOPICS
Search

Hh Function


HhFunction

The Hh-function is a function closely related to the normal distribution function. It can be defined using the auxilary functions

where erfc is the complementary error function. Then

Hh_(-n)(x) = (-1)^(n-1)sqrt(2pi)Z^((n-1))(x)
(4)

Values for integer indices from -3 to +3 are given by:

Hh_(-3)(x) = e^(-x^2/2)(x^2-1)
(6)
Hh_(-2)(x) = e^(-x^2/2)x
(7)
Hh_(-1)(x) = e^(-x^2/2)
(8)

See also

Erfc, Normal Distribution Function, Tetrachoric Function

Explore with Wolfram|Alpha

WolframAlpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 300 and 691, 1972.Jeffreys, H. and Jeffreys, B. S. "The Parabolic Cylinder, Hermite, and Hh Functions" et seq. §23.08-23.09 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 620-627, 1988.

Referenced on Wolfram|Alpha

Hh Function

Cite this as:

Weisstein, Eric W. "Hh Function." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/HhFunction.html

Subject classifications

AltStyle によって変換されたページ (->オリジナル) /