Harmonic Parameter
The harmonic parameter of a polyhedron is the weighted mean of the distances d_i from a fixed interior point to the faces, where the weights are the areas A_i of the faces, i.e.,
This parameter generalizes the identity
| [画像: (dV)/(dr)=S, ] |
(2)
|
where V is the volume, r is the inradius, and S is the surface area, which is valid only for symmetrical solids, to
| [画像: (dV)/(dh)=S. ] |
(3)
|
The harmonic parameter is independent of the choice of interior point (Fjelstad and Ginchev 2003). In addition, it can be defined not only for polyhedron, but any n-dimensional solids that have n-dimensional content V and (n-1)-dimensional content S.
Expressing the area A and perimeter p of a lamina in terms of h gives the identity
| [画像: (dA)/(dh)=p. ] |
(4)
|
The following table summarizes the harmonic parameter for a few common laminas. Here, r is the inradius of a given lamina, and a and b are the side lengths of a rectangle.
Expressing V and S for a solid in terms of h then gives the identity
| [画像: h=(3V)/S. ] |
(5)
|
The following table summarizes the harmonic parameter for a few common solids, where some of the more complicated values are given by the polynomial roots
| h_1=(256x^8-64512x^7-4257024x^6+34098944x^5+167319904x^4-806004288x^3-327993296x^2+816428176x+373301041)_6 h_2=(31622400x^8-6045062400x^7+65176660800x^6-187266038400x^5+85961856960x^4+136958389920x^3+42447187200x^2+5102095680x+214358881)_5 h_3=(3603193611264x^(12)-38078720649216x^(10)+49184509540608x^8-3562375387968x^6+308526620112x^4-3065029992x^2+38950081)_3 |
(6)
|
h_4 is root of a high-order polynomial, and
| h_5=1/(1202)[1/(10)(121461425+53168861sqrt(5)-4sqrt(30(28343974350325+12675597513679sqrt(5)))]^(1/2). |
(7)
|
See also
Surface Area, VolumeExplore with Wolfram|Alpha
More things to try:
References
Fjelstad, P. and Ginchev, I. "Volume, Surface Area, and the Harmonic Mean." Math. Mag. 76, 126-129, 2003.Referenced on Wolfram|Alpha
Harmonic ParameterCite this as:
Weisstein, Eric W. "Harmonic Parameter." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/HarmonicParameter.html