Fourier Transform--Exponential Function
The Fourier transform of e^(-k_0|x|) is given by
Now let u=-x so du=-dx, then
which, from the damped exponential cosine integral, gives
which is a Lorentzian function.
See also
Damped Exponential Cosine Integral, Exponential Function, Fourier Transform, Lorentzian FunctionExplore with Wolfram|Alpha
WolframAlpha
More things to try:
Cite this as:
Weisstein, Eric W. "Fourier Transform--Exponential Function." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/FourierTransformExponentialFunction.html