TOPICS
Search

Error Propagation


Given a formula y=f(x) with an absolute error in x of dx, the absolute error is dy. The relative error is dy/y. If x=f(u,v,...), then

where x^_ denotes the mean, so the sample variance is given by

The definitions of variance and covariance then give

(where s_(ii)=s_i^2), so

If u and v are uncorrelated, then s_(uv)=0 so

Now consider addition of quantities with errors. For x=au+/-bv, partialx/partialu=a and partialx/partialv=+/-b, so

s_x^2=a^2s_u^2+b^2s_v^2+/-2abs_(uv).
(9)

For division of quantities with x=+/-au/v, partialx/partialu=+/-a/v and partialx/partialv=∓au/v^2, so

Dividing through by x^2 and rearranging then gives

For exponentiation of quantities with

x=a^(+/-bu)=(e^(lna))^(+/-bu)=e^(+/-b(lna)u),
(12)

and

so

s_x=s_ub(lna)x
(14)
(s_x)/x=blnas_u.
(15)

If a=e, then

(s_x)/x=bs_u.
(16)

For logarithms of quantities with x=aln(+/-bu), partialx/partialu=a(+/-b)/(+/-bu)=a/u, so

s_x=a(s_u)/u.
(18)

For multiplication with x=+/-auv, partialx/partialu=+/-av and partialx/partialv=+/-au, so

s_x^2=a^2v^2s_u^2+a^2u^2s_v^2+2a^2uvs_(uv)
(19)

For powers, with x=au^(+/-b), partialx/partialu=+/-abu^(+/-b-1)=+/-bx/u, so

(s_x)/x=b(s_u)/u.
(23)

See also

Absolute Error, Accuracy, Covariance, Percentage Error, Precision, Relative Error, Significant Digits, Variance

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 14, 1972.Bevington, P. R. Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill, pp. 58-64, 1969.

Referenced on Wolfram|Alpha

Error Propagation

Cite this as:

Weisstein, Eric W. "Error Propagation." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/ErrorPropagation.html

Subject classifications

AltStyle によって変換されたページ (->オリジナル) /