Conway Graphs
There are a number of graphs associated with J. H. Conway.
The first is the unique rank-3 strongly regular graph with parameters (nu,k,lambda,mu)=(1408,567,246,216) with spectrum 567^139^(252)(-9)^(1155) (Brouwer and van Maldeghem 2022, p. 359).
A second is the unique rank-3 strongly regular graph with parameters (nu,k,lambda,mu)=(2300,891,378,324) and spectrum 891^163^(275)(-9)^(2024). This graph may be constructed in the Leech lattice (Brouwer and van Maldeghem 2022, pp. 365-366).
Explore with Wolfram|Alpha
WolframAlpha
More things to try:
References
Brouwer, A. E. and van Maldeghem, H. "The Conway Graph of 1408 Vertices" and "The Conway Graph on 2300 Vertices." §10.81 and 10.88 in Strongly Regular Graphs. Cambridge, England: Cambridge University Press, pp. 359 and 365-366, 2022.Referenced on Wolfram|Alpha
Conway GraphsCite this as:
Weisstein, Eric W. "Conway Graphs." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/ConwayGraphs.html