[Python-checkins] GH-81620: Add random.binomialvariate() (GH-94719)

rhettinger webhook-mailer at python.org
Wed Jul 13 10:46:15 EDT 2022


https://github.com/python/cpython/commit/ed06ec1ab851544234138952d357facb32eba6c5
commit: ed06ec1ab851544234138952d357facb32eba6c5
branch: main
author: Raymond Hettinger <rhettinger at users.noreply.github.com>
committer: rhettinger <rhettinger at users.noreply.github.com>
date: 2022年07月13日T09:46:04-05:00
summary:
GH-81620: Add random.binomialvariate() (GH-94719)
files:
A Misc/NEWS.d/next/Library/2022-07-09-15-17-02.gh-issue-81620.L0O_bV.rst
M Doc/library/random.rst
M Lib/random.py
M Lib/test/test_random.py
diff --git a/Doc/library/random.rst b/Doc/library/random.rst
index 613fbce0fdf20..78c2b030d6095 100644
--- a/Doc/library/random.rst
+++ b/Doc/library/random.rst
@@ -258,6 +258,28 @@ Functions for sequences
 The *population* must be a sequence. Automatic conversion of sets
 to lists is no longer supported.
 
+Discrete distributions
+----------------------
+
+The following function generates a discrete distribution.
+
+.. function:: binomialvariate(n=1, p=0.5)
+
+ `Binomial distribution
+ <http://mathworld.wolfram.com/BinomialDistribution.html>`_.
+ Return the number of successes for *n* independent trials with the
+ probability of success in each trial being *p*:
+
+ Mathematically equivalent to::
+
+ sum(random() < p for i in range(n))
+
+ The number of trials *n* should be a non-negative integer.
+ The probability of success *p* should be between ``0.0 <= p <= 1.0``.
+ The result is an integer in the range ``0 <= X <= n``.
+
+ .. versionadded:: 3.12
+
 
 .. _real-valued-distributions:
 
@@ -452,16 +474,13 @@ Simulations::
 >>> # Deal 20 cards without replacement from a deck
 >>> # of 52 playing cards, and determine the proportion of cards
 >>> # with a ten-value: ten, jack, queen, or king.
- >>> dealt = sample(['tens', 'low cards'], counts=[16, 36], k=20)
- >>> dealt.count('tens') / 20
+ >>> deal = sample(['tens', 'low cards'], counts=[16, 36], k=20)
+ >>> deal.count('tens') / 20
 0.15
 
 >>> # Estimate the probability of getting 5 or more heads from 7 spins
 >>> # of a biased coin that settles on heads 60% of the time.
- >>> def trial():
- ... return choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
- ...
- >>> sum(trial() for i in range(10_000)) / 10_000
+ >>> sum(binomialvariate(n=7, p=0.6) >= 5 for i in range(10_000)) / 10_000
 0.4169
 
 >>> # Probability of the median of 5 samples being in middle two quartiles
diff --git a/Lib/random.py b/Lib/random.py
index 2166474af0554..00849bd7e732f 100644
--- a/Lib/random.py
+++ b/Lib/random.py
@@ -24,6 +24,7 @@
 negative exponential
 gamma
 beta
+ binomial
 pareto
 Weibull
 
@@ -49,6 +50,7 @@
 from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
 from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
 from math import tau as TWOPI, floor as _floor, isfinite as _isfinite
+from math import lgamma as _lgamma, fabs as _fabs
 from os import urandom as _urandom
 from _collections_abc import Sequence as _Sequence
 from operator import index as _index
@@ -68,6 +70,7 @@
 "Random",
 "SystemRandom",
 "betavariate",
+ "binomialvariate",
 "choice",
 "choices",
 "expovariate",
@@ -725,6 +728,91 @@ def betavariate(self, alpha, beta):
 return y / (y + self.gammavariate(beta, 1.0))
 return 0.0
 
+
+ def binomialvariate(self, n=1, p=0.5):
+ """Binomial random variable.
+
+ Gives the number of successes for *n* independent trials
+ with the probability of success in each trial being *p*:
+
+ sum(random() < p for i in range(n))
+
+ Returns an integer in the range: 0 <= X <= n
+
+ """
+ # Error check inputs and handle edge cases
+ if n < 0:
+ raise ValueError("n must be non-negative")
+ if p <= 0.0 or p >= 1.0:
+ if p == 0.0:
+ return 0
+ if p == 1.0:
+ return n
+ raise ValueError("p must be in the range 0.0 <= p <= 1.0")
+
+ random = self.random
+
+ # Fast path for a common case
+ if n == 1:
+ return _index(random() < p)
+
+ # Exploit symmetry to establish: p <= 0.5
+ if p > 0.5:
+ return n - self.binomialvariate(n, 1.0 - p)
+
+ if n * p < 10.0:
+ # BG: Geometric method by Devroye with running time of O(np).
+ # https://dl.acm.org/doi/pdf/10.1145/42372.42381
+ x = y = 0
+ c = _log(1.0 - p)
+ if not c:
+ return x
+ while True:
+ y += _floor(_log(random()) / c) + 1
+ if y > n:
+ return x
+ x += 1
+
+ # BTRS: Transformed rejection with squeeze method by Wolfgang Hörmann
+ # https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8407&rep=rep1&type=pdf
+ assert n*p >= 10.0 and p <= 0.5
+ setup_complete = False
+
+ spq = _sqrt(n * p * (1.0 - p)) # Standard deviation of the distribution
+ b = 1.15 + 2.53 * spq
+ a = -0.0873 + 0.0248 * b + 0.01 * p
+ c = n * p + 0.5
+ vr = 0.92 - 4.2 / b
+
+ while True:
+
+ u = random()
+ v = random()
+ u -= 0.5
+ us = 0.5 - _fabs(u)
+ k = _floor((2.0 * a / us + b) * u + c)
+ if k < 0 or k > n:
+ continue
+
+ # The early-out "squeeze" test substantially reduces
+ # the number of acceptance condition evaluations.
+ if us >= 0.07 and v <= vr:
+ return k
+
+ # Acceptance-rejection test.
+ # Note, the original paper errorneously omits the call to log(v)
+ # when comparing to the log of the rescaled binomial distribution.
+ if not setup_complete:
+ alpha = (2.83 + 5.1 / b) * spq
+ lpq = _log(p / (1.0 - p))
+ m = _floor((n + 1) * p) # Mode of the distribution
+ h = _lgamma(m + 1) + _lgamma(n - m + 1)
+ setup_complete = True # Only needs to be done once
+ v *= alpha / (a / (us * us) + b)
+ if _log(v) <= h - _lgamma(k + 1) - _lgamma(n - k + 1) + (k - m) * lpq:
+ return k
+
+
 def paretovariate(self, alpha):
 """Pareto distribution. alpha is the shape parameter."""
 # Jain, pg. 495
@@ -810,6 +898,7 @@ def _notimplemented(self, *args, **kwds):
 gammavariate = _inst.gammavariate
 gauss = _inst.gauss
 betavariate = _inst.betavariate
+binomialvariate = _inst.binomialvariate
 paretovariate = _inst.paretovariate
 weibullvariate = _inst.weibullvariate
 getstate = _inst.getstate
@@ -834,15 +923,17 @@ def _test_generator(n, func, args):
 low = min(data)
 high = max(data)
 
- print(f'{t1 - t0:.3f} sec, {n} times {func.__name__}')
+ print(f'{t1 - t0:.3f} sec, {n} times {func.__name__}{args!r}')
 print('avg %g, stddev %g, min %g, max %g\n' % (xbar, sigma, low, high))
 
 
-def _test(N=2000):
+def _test(N=10_000):
 _test_generator(N, random, ())
 _test_generator(N, normalvariate, (0.0, 1.0))
 _test_generator(N, lognormvariate, (0.0, 1.0))
 _test_generator(N, vonmisesvariate, (0.0, 1.0))
+ _test_generator(N, binomialvariate, (15, 0.60))
+ _test_generator(N, binomialvariate, (100, 0.75))
 _test_generator(N, gammavariate, (0.01, 1.0))
 _test_generator(N, gammavariate, (0.1, 1.0))
 _test_generator(N, gammavariate, (0.1, 2.0))
diff --git a/Lib/test/test_random.py b/Lib/test/test_random.py
index fcf17a949c2a6..1e825c3572d20 100644
--- a/Lib/test/test_random.py
+++ b/Lib/test/test_random.py
@@ -1045,6 +1045,9 @@ def test_constant(self):
 (g.lognormvariate, (0.0, 0.0), 1.0),
 (g.lognormvariate, (-float('inf'), 0.0), 0.0),
 (g.normalvariate, (10.0, 0.0), 10.0),
+ (g.binomialvariate, (0, 0.5), 0),
+ (g.binomialvariate, (10, 0.0), 0),
+ (g.binomialvariate, (10, 1.0), 10),
 (g.paretovariate, (float('inf'),), 1.0),
 (g.weibullvariate, (10.0, float('inf')), 10.0),
 (g.weibullvariate, (0.0, 10.0), 0.0),
@@ -1052,6 +1055,59 @@ def test_constant(self):
 for i in range(N):
 self.assertEqual(variate(*args), expected)
 
+ def test_binomialvariate(self):
+ B = random.binomialvariate
+
+ # Cover all the code paths
+ with self.assertRaises(ValueError):
+ B(n=-1) # Negative n
+ with self.assertRaises(ValueError):
+ B(n=1, p=-0.5) # Negative p
+ with self.assertRaises(ValueError):
+ B(n=1, p=1.5) # p > 1.0
+ self.assertEqual(B(10, 0.0), 0) # p == 0.0
+ self.assertEqual(B(10, 1.0), 10) # p == 1.0
+ self.assertTrue(B(1, 0.3) in {0, 1}) # n == 1 fast path
+ self.assertTrue(B(1, 0.9) in {0, 1}) # n == 1 fast path
+ self.assertTrue(B(1, 0.0) in {0}) # n == 1 fast path
+ self.assertTrue(B(1, 1.0) in {1}) # n == 1 fast path
+
+ # BG method p <= 0.5 and n*p=1.25
+ self.assertTrue(B(5, 0.25) in set(range(6)))
+
+ # BG method p >= 0.5 and n*(1-p)=1.25
+ self.assertTrue(B(5, 0.75) in set(range(6)))
+
+ # BTRS method p <= 0.5 and n*p=25
+ self.assertTrue(B(100, 0.25) in set(range(101)))
+
+ # BTRS method p > 0.5 and n*(1-p)=25
+ self.assertTrue(B(100, 0.75) in set(range(101)))
+
+ # Statistical tests chosen such that they are
+ # exceedingly unlikely to ever fail for correct code.
+
+ # BG code path
+ # Expected dist: [31641, 42188, 21094, 4688, 391]
+ c = Counter(B(4, 0.25) for i in range(100_000))
+ self.assertTrue(29_641 <= c[0] <= 33_641, c)
+ self.assertTrue(40_188 <= c[1] <= 44_188)
+ self.assertTrue(19_094 <= c[2] <= 23_094)
+ self.assertTrue(2_688 <= c[3] <= 6_688)
+ self.assertEqual(set(c), {0, 1, 2, 3, 4})
+
+ # BTRS code path
+ # Sum of c[20], c[21], c[22], c[23], c[24] expected to be 36,214
+ c = Counter(B(100, 0.25) for i in range(100_000))
+ self.assertTrue(34_214 <= c[20]+c[21]+c[22]+c[23]+c[24] <= 38_214)
+ self.assertTrue(set(c) <= set(range(101)))
+ self.assertEqual(c.total(), 100_000)
+
+ # Demonstrate the BTRS works for huge values of n
+ self.assertTrue(19_000_000 <= B(100_000_000, 0.2) <= 21_000_000)
+ self.assertTrue(89_000_000 <= B(100_000_000, 0.9) <= 91_000_000)
+
+
 def test_von_mises_range(self):
 # Issue 17149: von mises variates were not consistently in the
 # range [0, 2*PI].
diff --git a/Misc/NEWS.d/next/Library/2022-07-09-15-17-02.gh-issue-81620.L0O_bV.rst b/Misc/NEWS.d/next/Library/2022-07-09-15-17-02.gh-issue-81620.L0O_bV.rst
new file mode 100644
index 0000000000000..b4ccea4924ff6
--- /dev/null
+++ b/Misc/NEWS.d/next/Library/2022-07-09-15-17-02.gh-issue-81620.L0O_bV.rst
@@ -0,0 +1 @@
+Add random.binomialvariate().


More information about the Python-checkins mailing list

AltStyle によって変換されたページ (->オリジナル) /