[Python-checkins] Improve code organization for the random module (GH-21161)

Raymond Hettinger webhook-mailer at python.org
Thu Jun 25 20:03:58 EDT 2020


https://github.com/python/cpython/commit/ef19bad7d6da99575d66c1f5dc8fd6ac57e92f6e
commit: ef19bad7d6da99575d66c1f5dc8fd6ac57e92f6e
branch: master
author: Raymond Hettinger <rhettinger at users.noreply.github.com>
committer: GitHub <noreply at github.com>
date: 2020年06月25日T17:03:50-07:00
summary:
Improve code organization for the random module (GH-21161)
files:
M Lib/random.py
diff --git a/Lib/random.py b/Lib/random.py
index ae7b5cf4e72e8..a6454f520df0a 100644
--- a/Lib/random.py
+++ b/Lib/random.py
@@ -1,5 +1,9 @@
 """Random variable generators.
 
+ bytes
+ -----
+ uniform bytes (values between 0 and 255)
+
 integers
 --------
 uniform within range
@@ -37,6 +41,10 @@
 
 """
 
+# Translated by Guido van Rossum from C source provided by
+# Adrian Baddeley. Adapted by Raymond Hettinger for use with
+# the Mersenne Twister and os.urandom() core generators.
+
 from warnings import warn as _warn
 from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
 from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
@@ -46,6 +54,7 @@
 from itertools import accumulate as _accumulate, repeat as _repeat
 from bisect import bisect as _bisect
 import os as _os
+import _random
 
 try:
 # hashlib is pretty heavy to load, try lean internal module first
@@ -54,7 +63,6 @@
 # fallback to official implementation
 from hashlib import sha512 as _sha512
 
-
 __all__ = [
 "Random",
 "SystemRandom",
@@ -89,13 +97,6 @@
 RECIP_BPF = 2 ** -BPF
 
 
-# Translated by Guido van Rossum from C source provided by
-# Adrian Baddeley. Adapted by Raymond Hettinger for use with
-# the Mersenne Twister and os.urandom() core generators.
-
-import _random
-
-
 class Random(_random.Random):
 """Random number generator base class used by bound module functions.
 
@@ -121,26 +122,6 @@ def __init__(self, x=None):
 self.seed(x)
 self.gauss_next = None
 
- def __init_subclass__(cls, /, **kwargs):
- """Control how subclasses generate random integers.
-
- The algorithm a subclass can use depends on the random() and/or
- getrandbits() implementation available to it and determines
- whether it can generate random integers from arbitrarily large
- ranges.
- """
-
- for c in cls.__mro__:
- if '_randbelow' in c.__dict__:
- # just inherit it
- break
- if 'getrandbits' in c.__dict__:
- cls._randbelow = cls._randbelow_with_getrandbits
- break
- if 'random' in c.__dict__:
- cls._randbelow = cls._randbelow_without_getrandbits
- break
-
 def seed(self, a=None, version=2):
 """Initialize internal state from a seed.
 
@@ -210,14 +191,11 @@ def setstate(self, state):
 "Random.setstate() of version %s" %
 (version, self.VERSION))
 
- ## ---- Methods below this point do not need to be overridden when
- ## ---- subclassing for the purpose of using a different core generator.
 
- ## -------------------- bytes methods ---------------------
+ ## -------------------------------------------------------
+ ## ---- Methods below this point do not need to be overridden or extended
+ ## ---- when subclassing for the purpose of using a different core generator.
 
- def randbytes(self, n):
- """Generate n random bytes."""
- return self.getrandbits(n * 8).to_bytes(n, 'little')
 
 ## -------------------- pickle support -------------------
 
@@ -233,6 +211,80 @@ def __setstate__(self, state): # for pickle
 def __reduce__(self):
 return self.__class__, (), self.getstate()
 
+
+ ## ---- internal support method for evenly distributed integers ----
+
+ def __init_subclass__(cls, /, **kwargs):
+ """Control how subclasses generate random integers.
+
+ The algorithm a subclass can use depends on the random() and/or
+ getrandbits() implementation available to it and determines
+ whether it can generate random integers from arbitrarily large
+ ranges.
+ """
+
+ for c in cls.__mro__:
+ if '_randbelow' in c.__dict__:
+ # just inherit it
+ break
+ if 'getrandbits' in c.__dict__:
+ cls._randbelow = cls._randbelow_with_getrandbits
+ break
+ if 'random' in c.__dict__:
+ cls._randbelow = cls._randbelow_without_getrandbits
+ break
+
+ def _randbelow_with_getrandbits(self, n):
+ "Return a random int in the range [0,n). Returns 0 if n==0."
+
+ if not n:
+ return 0
+ getrandbits = self.getrandbits
+ k = n.bit_length() # don't use (n-1) here because n can be 1
+ r = getrandbits(k) # 0 <= r < 2**k
+ while r >= n:
+ r = getrandbits(k)
+ return r
+
+ def _randbelow_without_getrandbits(self, n, maxsize=1<<BPF):
+ """Return a random int in the range [0,n). Returns 0 if n==0.
+
+ The implementation does not use getrandbits, but only random.
+ """
+
+ random = self.random
+ if n >= maxsize:
+ _warn("Underlying random() generator does not supply \n"
+ "enough bits to choose from a population range this large.\n"
+ "To remove the range limitation, add a getrandbits() method.")
+ return _floor(random() * n)
+ if n == 0:
+ return 0
+ rem = maxsize % n
+ limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
+ r = random()
+ while r >= limit:
+ r = random()
+ return _floor(r * maxsize) % n
+
+ _randbelow = _randbelow_with_getrandbits
+
+
+ ## --------------------------------------------------------
+ ## ---- Methods below this point generate custom distributions
+ ## ---- based on the methods defined above. They do not
+ ## ---- directly touch the underlying generator and only
+ ## ---- access randomness through the methods: random(),
+ ## ---- getrandbits(), or _randbelow().
+
+
+ ## -------------------- bytes methods ---------------------
+
+ def randbytes(self, n):
+ """Generate n random bytes."""
+ return self.getrandbits(n * 8).to_bytes(n, 'little')
+
+
 ## -------------------- integer methods -------------------
 
 def randrange(self, start, stop=None, step=1):
@@ -285,40 +337,6 @@ def randint(self, a, b):
 
 return self.randrange(a, b+1)
 
- def _randbelow_with_getrandbits(self, n):
- "Return a random int in the range [0,n). Returns 0 if n==0."
-
- if not n:
- return 0
- getrandbits = self.getrandbits
- k = n.bit_length() # don't use (n-1) here because n can be 1
- r = getrandbits(k) # 0 <= r < 2**k
- while r >= n:
- r = getrandbits(k)
- return r
-
- def _randbelow_without_getrandbits(self, n, maxsize=1<<BPF):
- """Return a random int in the range [0,n). Returns 0 if n==0.
-
- The implementation does not use getrandbits, but only random.
- """
-
- random = self.random
- if n >= maxsize:
- _warn("Underlying random() generator does not supply \n"
- "enough bits to choose from a population range this large.\n"
- "To remove the range limitation, add a getrandbits() method.")
- return _floor(random() * n)
- if n == 0:
- return 0
- rem = maxsize % n
- limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
- r = random()
- while r >= limit:
- r = random()
- return _floor(r * maxsize) % n
-
- _randbelow = _randbelow_with_getrandbits
 
 ## -------------------- sequence methods -------------------
 
@@ -479,16 +497,13 @@ def choices(self, population, weights=None, *, cum_weights=None, k=1):
 return [population[bisect(cum_weights, random() * total, 0, hi)]
 for i in _repeat(None, k)]
 
- ## -------------------- real-valued distributions -------------------
 
- ## -------------------- uniform distribution -------------------
+ ## -------------------- real-valued distributions -------------------
 
 def uniform(self, a, b):
 "Get a random number in the range [a, b) or [a, b] depending on rounding."
 return a + (b - a) * self.random()
 
- ## -------------------- triangular --------------------
-
 def triangular(self, low=0.0, high=1.0, mode=None):
 """Triangular distribution.
 
@@ -509,16 +524,12 @@ def triangular(self, low=0.0, high=1.0, mode=None):
 low, high = high, low
 return low + (high - low) * _sqrt(u * c)
 
- ## -------------------- normal distribution --------------------
-
 def normalvariate(self, mu, sigma):
 """Normal distribution.
 
 mu is the mean, and sigma is the standard deviation.
 
 """
- # mu = mean, sigma = standard deviation
-
 # Uses Kinderman and Monahan method. Reference: Kinderman,
 # A.J. and Monahan, J.F., "Computer generation of random
 # variables using the ratio of uniform deviates", ACM Trans
@@ -534,7 +545,43 @@ def normalvariate(self, mu, sigma):
 break
 return mu + z * sigma
 
- ## -------------------- lognormal distribution --------------------
+ def gauss(self, mu, sigma):
+ """Gaussian distribution.
+
+ mu is the mean, and sigma is the standard deviation. This is
+ slightly faster than the normalvariate() function.
+
+ Not thread-safe without a lock around calls.
+
+ """
+ # When x and y are two variables from [0, 1), uniformly
+ # distributed, then
+ #
+ # cos(2*pi*x)*sqrt(-2*log(1-y))
+ # sin(2*pi*x)*sqrt(-2*log(1-y))
+ #
+ # are two *independent* variables with normal distribution
+ # (mu = 0, sigma = 1).
+ # (Lambert Meertens)
+ # (corrected version; bug discovered by Mike Miller, fixed by LM)
+
+ # Multithreading note: When two threads call this function
+ # simultaneously, it is possible that they will receive the
+ # same return value. The window is very small though. To
+ # avoid this, you have to use a lock around all calls. (I
+ # didn't want to slow this down in the serial case by using a
+ # lock here.)
+
+ random = self.random
+ z = self.gauss_next
+ self.gauss_next = None
+ if z is None:
+ x2pi = random() * TWOPI
+ g2rad = _sqrt(-2.0 * _log(1.0 - random()))
+ z = _cos(x2pi) * g2rad
+ self.gauss_next = _sin(x2pi) * g2rad
+
+ return mu + z * sigma
 
 def lognormvariate(self, mu, sigma):
 """Log normal distribution.
@@ -546,8 +593,6 @@ def lognormvariate(self, mu, sigma):
 """
 return _exp(self.normalvariate(mu, sigma))
 
- ## -------------------- exponential distribution --------------------
-
 def expovariate(self, lambd):
 """Exponential distribution.
 
@@ -565,8 +610,6 @@ def expovariate(self, lambd):
 # possibility of taking the log of zero.
 return -_log(1.0 - self.random()) / lambd
 
- ## -------------------- von Mises distribution --------------------
-
 def vonmisesvariate(self, mu, kappa):
 """Circular data distribution.
 
@@ -576,10 +619,6 @@ def vonmisesvariate(self, mu, kappa):
 to a uniform random angle over the range 0 to 2*pi.
 
 """
- # mu: mean angle (in radians between 0 and 2*pi)
- # kappa: concentration parameter kappa (>= 0)
- # if kappa = 0 generate uniform random angle
-
 # Based upon an algorithm published in: Fisher, N.I.,
 # "Statistical Analysis of Circular Data", Cambridge
 # University Press, 1993.
@@ -613,8 +652,6 @@ def vonmisesvariate(self, mu, kappa):
 
 return theta
 
- ## -------------------- gamma distribution --------------------
-
 def gammavariate(self, alpha, beta):
 """Gamma distribution. Not the gamma function!
 
@@ -627,7 +664,6 @@ def gammavariate(self, alpha, beta):
 math.gamma(alpha) * beta ** alpha
 
 """
-
 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
 
 # Warning: a few older sources define the gamma distribution in terms
@@ -681,61 +717,6 @@ def gammavariate(self, alpha, beta):
 break
 return x * beta
 
- ## -------------------- Gauss (faster alternative) --------------------
-
- def gauss(self, mu, sigma):
- """Gaussian distribution.
-
- mu is the mean, and sigma is the standard deviation. This is
- slightly faster than the normalvariate() function.
-
- Not thread-safe without a lock around calls.
-
- """
-
- # When x and y are two variables from [0, 1), uniformly
- # distributed, then
- #
- # cos(2*pi*x)*sqrt(-2*log(1-y))
- # sin(2*pi*x)*sqrt(-2*log(1-y))
- #
- # are two *independent* variables with normal distribution
- # (mu = 0, sigma = 1).
- # (Lambert Meertens)
- # (corrected version; bug discovered by Mike Miller, fixed by LM)
-
- # Multithreading note: When two threads call this function
- # simultaneously, it is possible that they will receive the
- # same return value. The window is very small though. To
- # avoid this, you have to use a lock around all calls. (I
- # didn't want to slow this down in the serial case by using a
- # lock here.)
-
- random = self.random
- z = self.gauss_next
- self.gauss_next = None
- if z is None:
- x2pi = random() * TWOPI
- g2rad = _sqrt(-2.0 * _log(1.0 - random()))
- z = _cos(x2pi) * g2rad
- self.gauss_next = _sin(x2pi) * g2rad
-
- return mu + z * sigma
-
- ## -------------------- beta --------------------
- ## See
- ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
- ## for Ivan Frohne's insightful analysis of why the original implementation:
- ##
- ## def betavariate(self, alpha, beta):
- ## # Discrete Event Simulation in C, pp 87-88.
- ##
- ## y = self.expovariate(alpha)
- ## z = self.expovariate(1.0/beta)
- ## return z/(y+z)
- ##
- ## was dead wrong, and how it probably got that way.
-
 def betavariate(self, alpha, beta):
 """Beta distribution.
 
@@ -743,6 +724,18 @@ def betavariate(self, alpha, beta):
 Returned values range between 0 and 1.
 
 """
+ ## See
+ ## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
+ ## for Ivan Frohne's insightful analysis of why the original implementation:
+ ##
+ ## def betavariate(self, alpha, beta):
+ ## # Discrete Event Simulation in C, pp 87-88.
+ ##
+ ## y = self.expovariate(alpha)
+ ## z = self.expovariate(1.0/beta)
+ ## return z/(y+z)
+ ##
+ ## was dead wrong, and how it probably got that way.
 
 # This version due to Janne Sinkkonen, and matches all the std
 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
@@ -751,8 +744,6 @@ def betavariate(self, alpha, beta):
 return y / (y + self.gammavariate(beta, 1.0))
 return 0.0
 
- ## -------------------- Pareto --------------------
-
 def paretovariate(self, alpha):
 """Pareto distribution. alpha is the shape parameter."""
 # Jain, pg. 495
@@ -760,8 +751,6 @@ def paretovariate(self, alpha):
 u = 1.0 - self.random()
 return 1.0 / u ** (1.0 / alpha)
 
- ## -------------------- Weibull --------------------
-
 def weibullvariate(self, alpha, beta):
 """Weibull distribution.
 
@@ -774,14 +763,17 @@ def weibullvariate(self, alpha, beta):
 return alpha * (-_log(u)) ** (1.0 / beta)
 
 
+## ------------------------------------------------------------------
 ## --------------- Operating System Random Source ------------------
 
+
 class SystemRandom(Random):
 """Alternate random number generator using sources provided
 by the operating system (such as /dev/urandom on Unix or
 CryptGenRandom on Windows).
 
 Not available on all systems (see os.urandom() for details).
+
 """
 
 def random(self):
@@ -812,7 +804,41 @@ def _notimplemented(self, *args, **kwds):
 getstate = setstate = _notimplemented
 
 
-## -------------------- test program --------------------
+# ----------------------------------------------------------------------
+# Create one instance, seeded from current time, and export its methods
+# as module-level functions. The functions share state across all uses
+# (both in the user's code and in the Python libraries), but that's fine
+# for most programs and is easier for the casual user than making them
+# instantiate their own Random() instance.
+
+_inst = Random()
+seed = _inst.seed
+random = _inst.random
+uniform = _inst.uniform
+triangular = _inst.triangular
+randint = _inst.randint
+choice = _inst.choice
+randrange = _inst.randrange
+sample = _inst.sample
+shuffle = _inst.shuffle
+choices = _inst.choices
+normalvariate = _inst.normalvariate
+lognormvariate = _inst.lognormvariate
+expovariate = _inst.expovariate
+vonmisesvariate = _inst.vonmisesvariate
+gammavariate = _inst.gammavariate
+gauss = _inst.gauss
+betavariate = _inst.betavariate
+paretovariate = _inst.paretovariate
+weibullvariate = _inst.weibullvariate
+getstate = _inst.getstate
+setstate = _inst.setstate
+getrandbits = _inst.getrandbits
+randbytes = _inst.randbytes
+
+
+## ------------------------------------------------------
+## ----------------- test program -----------------------
 
 def _test_generator(n, func, args):
 from statistics import stdev, fmean as mean
@@ -849,36 +875,9 @@ def _test(N=2000):
 _test_generator(N, betavariate, (3.0, 3.0))
 _test_generator(N, triangular, (0.0, 1.0, 1.0 / 3.0))
 
-# Create one instance, seeded from current time, and export its methods
-# as module-level functions. The functions share state across all uses
-# (both in the user's code and in the Python libraries), but that's fine
-# for most programs and is easier for the casual user than making them
-# instantiate their own Random() instance.
 
-_inst = Random()
-seed = _inst.seed
-random = _inst.random
-uniform = _inst.uniform
-triangular = _inst.triangular
-randint = _inst.randint
-choice = _inst.choice
-randrange = _inst.randrange
-sample = _inst.sample
-shuffle = _inst.shuffle
-choices = _inst.choices
-normalvariate = _inst.normalvariate
-lognormvariate = _inst.lognormvariate
-expovariate = _inst.expovariate
-vonmisesvariate = _inst.vonmisesvariate
-gammavariate = _inst.gammavariate
-gauss = _inst.gauss
-betavariate = _inst.betavariate
-paretovariate = _inst.paretovariate
-weibullvariate = _inst.weibullvariate
-getstate = _inst.getstate
-setstate = _inst.setstate
-getrandbits = _inst.getrandbits
-randbytes = _inst.randbytes
+## ------------------------------------------------------
+## ------------------ fork support ---------------------
 
 if hasattr(_os, "fork"):
 _os.register_at_fork(after_in_child=_inst.seed)


More information about the Python-checkins mailing list

AltStyle によって変換されたページ (->オリジナル) /