[Python-checkins] python/dist/src/Lib/csv/util sniffer.py,NONE,1.1

montanaro@users.sourceforge.net montanaro@users.sourceforge.net
2003年3月20日 15:31:26 -0800


Update of /cvsroot/python/python/dist/src/Lib/csv/util
In directory sc8-pr-cvs1:/tmp/cvs-serv25444/Lib/csv/util
Added Files:
	sniffer.py 
Log Message:
forgot Cliff's sniffer
--- NEW FILE: sniffer.py ---
"""
dialect = Sniffer().sniff(file('csv/easy.csv'))
print "delimiter", dialect.delimiter
print "quotechar", dialect.quotechar
print "skipinitialspace", dialect.skipinitialspace
"""
from csv import csv
import re
# ------------------------------------------------------------------------------
class Sniffer:
 """
 "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
 Returns a csv.Dialect object.
 """
 def __init__(self, sample = 16 * 1024):
 # in case there is more than one possible delimiter
 self.preferred = [',', '\t', ';', ' ', ':']
 # amount of data (in bytes) to sample
 self.sample = sample
 def sniff(self, fileobj):
 """
 Takes a file-like object and returns a dialect (or None)
 """
 
 self.fileobj = fileobj
 
 data = fileobj.read(self.sample)
 quotechar, delimiter, skipinitialspace = self._guessQuoteAndDelimiter(data)
 if delimiter is None:
 delimiter, skipinitialspace = self._guessDelimiter(data)
 class Dialect(csv.Dialect):
 _name = "sniffed"
 lineterminator = '\r\n'
 quoting = csv.QUOTE_MINIMAL
 # escapechar = ''
 doublequote = False
 Dialect.delimiter = delimiter
 Dialect.quotechar = quotechar
 Dialect.skipinitialspace = skipinitialspace
 self.dialect = Dialect
 return self.dialect
 def hasHeaders(self):
 return self._hasHeaders(self.fileobj, self.dialect)
 
 def register_dialect(self, name = 'sniffed'):
 csv.register_dialect(name, self.dialect)
 
 def _guessQuoteAndDelimiter(self, data):
 """
 Looks for text enclosed between two identical quotes
 (the probable quotechar) which are preceded and followed
 by the same character (the probable delimiter).
 For example:
 ,'some text',
 The quote with the most wins, same with the delimiter.
 If there is no quotechar the delimiter can't be determined
 this way.
 """
 matches = []
 for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?",
 '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?"
 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space)
 regexp = re.compile(restr, re.S | re.M)
 matches = regexp.findall(data)
 if matches:
 break
 
 if not matches:
 return ('', None, 0) # (quotechar, delimiter, skipinitialspace)
 quotes = {}
 delims = {}
 spaces = 0
 for m in matches:
 n = regexp.groupindex['quote'] - 1
 key = m[n]
 if key:
 quotes[key] = quotes.get(key, 0) + 1
 try:
 n = regexp.groupindex['delim'] - 1
 key = m[n]
 except KeyError:
 continue
 if key:
 delims[key] = delims.get(key, 0) + 1
 try:
 n = regexp.groupindex['space'] - 1
 except KeyError:
 continue
 if m[n]:
 spaces += 1
 quotechar = reduce(lambda a, b, quotes = quotes:
 (quotes[a] > quotes[b]) and a or b, quotes.keys())
 if delims:
 delim = reduce(lambda a, b, delims = delims:
 (delims[a] > delims[b]) and a or b, delims.keys())
 skipinitialspace = delims[delim] == spaces
 if delim == '\n': # most likely a file with a single column
 delim = ''
 else:
 # there is *no* delimiter, it's a single column of quoted data
 delim = ''
 skipinitialspace = 0
 
 return (quotechar, delim, skipinitialspace)
 def _guessDelimiter(self, data):
 """
 The delimiter /should/ occur the same number of times on
 each row. However, due to malformed data, it may not. We don't want
 an all or nothing approach, so we allow for small variations in this
 number.
 1) build a table of the frequency of each character on every line.
 2) build a table of freqencies of this frequency (meta-frequency?),
 e.g. "x occurred 5 times in 10 rows, 6 times in 1000 rows,
 7 times in 2 rows"
 3) use the mode of the meta-frequency to determine the /expected/
 frequency for that character 
 4) find out how often the character actually meets that goal 
 5) the character that best meets its goal is the delimiter 
 For performance reasons, the data is evaluated in chunks, so it can
 try and evaluate the smallest portion of the data possible, evaluating
 additional chunks as necessary. 
 """
 
 data = filter(None, data.split('\n'))
 ascii = [chr(c) for c in range(127)] # 7-bit ASCII
 # build frequency tables
 chunkLength = min(10, len(data))
 iteration = 0
 charFrequency = {}
 modes = {}
 delims = {}
 start, end = 0, min(chunkLength, len(data))
 while start < len(data):
 iteration += 1
 for line in data[start:end]:
 for char in ascii:
 metafrequency = charFrequency.get(char, {})
 freq = line.strip().count(char) # must count even if frequency is 0
 metafrequency[freq] = metafrequency.get(freq, 0) + 1 # value is the mode
 charFrequency[char] = metafrequency
 for char in charFrequency.keys():
 items = charFrequency[char].items()
 if len(items) == 1 and items[0][0] == 0:
 continue
 # get the mode of the frequencies
 if len(items) > 1:
 modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b, items)
 # adjust the mode - subtract the sum of all other frequencies
 items.remove(modes[char])
 modes[char] = (modes[char][0], modes[char][1]
 - reduce(lambda a, b: (0, a[1] + b[1]), items)[1])
 else:
 modes[char] = items[0]
 # build a list of possible delimiters
 modeList = modes.items()
 total = float(chunkLength * iteration)
 consistency = 1.0 # (rows of consistent data) / (number of rows) = 100%
 threshold = 0.9 # minimum consistency threshold
 while len(delims) == 0 and consistency >= threshold:
 for k, v in modeList:
 if v[0] > 0 and v[1] > 0:
 if (v[1]/total) >= consistency:
 delims[k] = v
 consistency -= 0.01
 if len(delims) == 1:
 delim = delims.keys()[0]
 skipinitialspace = data[0].count(delim) == data[0].count("%c " % delim)
 return (delim, skipinitialspace)
 # analyze another chunkLength lines
 start = end
 end += chunkLength
 if not delims:
 return ('', 0)
 # if there's more than one, fall back to a 'preferred' list
 if len(delims) > 1:
 for d in self.preferred:
 if d in delims.keys():
 skipinitialspace = data[0].count(d) == data[0].count("%c " % d)
 return (d, skipinitialspace)
 # finally, just return the first damn character in the list
 delim = delims.keys()[0]
 skipinitialspace = data[0].count(delim) == data[0].count("%c " % delim)
 return (delim, skipinitialspace)
 def _hasHeaders(self, fileobj, dialect):
 # Creates a dictionary of types of data in each column. If any column
 # is of a single type (say, integers), *except* for the first row, then the first
 # row is presumed to be labels. If the type can't be determined, it is assumed to
 # be a string in which case the length of the string is the determining factor: if
 # all of the rows except for the first are the same length, it's a header.
 # Finally, a 'vote' is taken at the end for each column, adding or subtracting from
 # the likelihood of the first row being a header. 
 def seval(item):
 """
 Strips parens from item prior to calling eval in an attempt to make it safer
 """
 return eval(item.replace('(', '').replace(')', ''))
 fileobj.seek(0) # rewind the fileobj - this might not work for some file-like objects...
 
 reader = csv.reader(fileobj,
 delimiter = dialect.delimiter,
 quotechar = dialect.quotechar,
 skipinitialspace = dialect.skipinitialspace)
 header = reader.next() # assume first row is header
 columns = len(header)
 columnTypes = {}
 for i in range(columns): columnTypes[i] = None
 checked = 0
 for row in reader:
 if checked > 20: # arbitrary number of rows to check, to keep it sane
 break
 checked += 1
 if len(row) != columns:
 continue # skip rows that have irregular number of columns
 for col in columnTypes.keys():
 try:
 try:
 # is it a built-in type (besides string)?
 thisType = type(seval(row[col]))
 except OverflowError:
 # a long int?
 thisType = type(seval(row[col] + 'L'))
 thisType = type(0) # treat long ints as int
 except:
 # fallback to length of string
 thisType = len(row[col])
 if thisType != columnTypes[col]:
 if columnTypes[col] is None: # add new column type
 columnTypes[col] = thisType
 else: # type is inconsistent, remove column from consideration
 del columnTypes[col]
 # finally, compare results against first row and "vote" on whether it's a header
 hasHeader = 0
 for col, colType in columnTypes.items():
 if type(colType) == type(0): # it's a length
 if len(header[col]) != colType:
 hasHeader += 1
 else:
 hasHeader -= 1
 else: # attempt typecast
 try:
 eval("%s(%s)" % (colType.__name__, header[col]))
 except:
 hasHeader += 1
 else:
 hasHeader -= 1
 return hasHeader > 0

AltStyle によって変換されたページ (->オリジナル) /