Skip to main content
Springer Nature Link
Log in

On the frozen F-theory landscape

  • Regular Article - Theoretical Physics
  • Open access
  • Published:

You have full access to this open access article

A preprint version of the article is available at arXiv.

Abstract

We study 6d \(\mathcal{N}\) = (1, 0) supergravity theories arising in the frozen phase of F-theory. For each of the known global models, we construct an F-theory compactification in the unfrozen phase with an identical non-abelian gauge algebra and massless matter content. Two such low energy effective theories are then distinguished through gauge enhancements in moduli space. We study potentially new global models obtained via compact embeddings of a plethora of 6d \(\mathcal{N}\) = (1, 0) superconformal field theories and little string theories constructed using frozen 7-branes. In some cases, these provably do not exist, and in other cases, we explicitly construct a compact embedding, yielding 6d supergravity theories with new massless spectra. Finally, by using gravitational anomaly cancellation, we conjecture the existence of localized neutral hypermultiplets along frozen 7-brane loci.

Article PDF

Similar content being viewed by others

Discover the latest articles, books and news in related subjects, suggested using machine learning.
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. C. Vafa, Evidence for F theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  2. D.R. Morrison and C. Vafa, Compactifications of F theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].

  3. D.R. Morrison and C. Vafa, Compactifications of F theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

  4. G. Di Cerbo and R. Svaldi, Birational boundedness of low-dimensional elliptic Calabi-Yau varieties with a section, Compos. Math. 157 (2021) 1766.

    Article MathSciNet Google Scholar

  5. J. de Boer et al., Triples, fluxes, and strings, Adv. Theor. Math. Phys. 4 (2002) 995 [hep-th/0103170] [INSPIRE].

    Article MathSciNet Google Scholar

  6. Y. Tachikawa, Frozen singularities in M and F theory, JHEP 06 (2016) 128 [arXiv:1508.06679] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  7. E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006 [hep-th/9712028] [INSPIRE].

    ADS MathSciNet Google Scholar

  8. M. Cvetič, M. Dierigl, L. Lin and H.Y. Zhang, All eight- and nine-dimensional string vacua from junctions, Phys. Rev. D 106 (2022) 026007 [arXiv:2203.03644] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  9. L. Bhardwaj, D.R. Morrison, Y. Tachikawa and A. Tomasiello, The frozen phase of F-theory, JHEP 08 (2018) 138 [arXiv:1805.09070] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  10. L. Bhardwaj, Revisiting the classifications of 6d SCFTs and LSTs, JHEP 03 (2020) 171 [arXiv:1903.10503] [INSPIRE].

    Article ADS Google Scholar

  11. M. Bershadsky, T. Pantev and V. Sadov, F theory with quantized fluxes, Adv. Theor. Math. Phys. 3 (1999) 727 [hep-th/9805056] [INSPIRE].

    Article MathSciNet Google Scholar

  12. N. Nakayama, On Weierstrass Models, in H. Hijikata et al. eds. Algebraic Geometry and Commutative Algebra, Academic Press (1988), p. 405–431 [https://doi.org/10.1016/b978-0-12-348032-3.50004-9].

  13. V. Kumar, D.R. Morrison and W. Taylor, Mapping 6D N = 1 supergravities to F-theory, JHEP 02 (2010) 099 [arXiv:0911.3393] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  14. V. Kumar, D.R. Morrison and W. Taylor, Global aspects of the space of 6D N = 1 supergravities, JHEP 11 (2010) 118 [arXiv:1008.1062] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  15. D.R. Morrison and W. Taylor, Matter and singularities, JHEP 01 (2012) 022 [arXiv:1106.3563] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  16. D.R. Morrison and W. Taylor, Classifying bases for 6D F-theory models, Central Eur. J. Phys. 10 (2012) 1072 [arXiv:1201.1943] [INSPIRE].

    ADS Google Scholar

  17. D.R. Morrison and W. Taylor, Toric bases for 6D F-theory models, Fortsch. Phys. 60 (2012) 1187 [arXiv:1204.0283] [INSPIRE].

    Article ADS Google Scholar

  18. V. Kumar, D.S. Park and W. Taylor, 6D supergravity without tensor multiplets, JHEP 04 (2011) 080 [arXiv:1011.0726] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  19. V. Kumar and W. Taylor, A Bound on 6D N = 1 supergravities, JHEP 12 (2009) 050 [arXiv:0910.1586] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  20. V. Kumar and W. Taylor, String Universality in Six Dimensions, Adv. Theor. Math. Phys. 15 (2011) 325 [arXiv:0906.0987] [INSPIRE].

    Article MathSciNet Google Scholar

  21. D.S. Park and W. Taylor, Constraints on 6D Supergravity Theories with Abelian Gauge Symmetry, JHEP 01 (2012) 141 [arXiv:1110.5916] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  22. S. Monnier, G.W. Moore and D.S. Park, Quantization of anomaly coefficients in 6D \(\mathcal{N}\) = (1, 0) supergravity, JHEP 02 (2018) 020 [arXiv:1711.04777] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  23. A. Grassi, J. Halverson, J. Shaneson and W. Taylor, Non-Higgsable QCD and the Standard Model Spectrum in F-theory, JHEP 01 (2015) 086 [arXiv:1409.8295] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  24. A. Grassi and D.R. Morrison, Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds, Commun. Num. Theor. Phys. 6 (2012) 51 [arXiv:1109.0042] [INSPIRE].

    Article MathSciNet Google Scholar

  25. A. Grassi et al., Non-simply-laced Symmetry Algebras in F-theory on Singular Spaces, JHEP 09 (2018) 129 [arXiv:1805.06949] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  26. A. Grassi et al., 6D anomaly-free matter spectrum in F-theory on singular spaces, JHEP 08 (2022) 182 [arXiv:2110.06943] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  27. J.D. Velez and C.A. Cadavid, Normal Factorization in SL(2, Z) and the Confluence of Singular Fibers in Elliptic Fibrations, arXiv:0802.0005.

  28. M. Berkooz et al., Anomalies, dualities, and topology of D = 6N = 1 superstring vacua, Nucl. Phys. B 475 (1996) 115 [hep-th/9605184] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  29. E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Trans. Am. Math. Soc. Ser. 2 6 (1957) 111 [INSPIRE].

  30. P.S. Aspinwall and M. Gross, The SO(32) heterotic string on a K3 surface, Phys. Lett. B 387 (1996) 735 [hep-th/9605131] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  31. S. Katz, D.R. Morrison, S. Schafer-Nameki and J. Sully, Tate’s algorithm and F-theory, JHEP 08 (2011) 094 [arXiv:1106.3854] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  32. C. Lawrie and S. Schäfer-Nameki, The Tate Form on Steroids: Resolution and Higher Codimension Fibers, JHEP 04 (2013) 061 [arXiv:1212.2949] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  33. F. Apruzzi, J.J. Heckman, D.R. Morrison and L. Tizzano, 4D Gauge Theories with Conformal Matter, JHEP 09 (2018) 088 [arXiv:1803.00582] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  34. P.S. Aspinwall, Point - like instantons and the spin (32) / Z(2) heterotic string, Nucl. Phys. B 496 (1997) 149 [hep-th/9612108] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  35. M. Bianchi and A. Sagnotti, Twist symmetry and open string Wilson lines, Nucl. Phys. B 361 (1991) 519 [INSPIRE].

  36. E.G. Gimon and J. Polchinski, Consistency conditions for orientifolds and D-manifolds, Phys. Rev. D 54 (1996) 1667 [hep-th/9601038] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  37. M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  38. M. Del Zotto, J.J. Heckman, D.R. Morrison and D.S. Park, 6D SCFTs and Gravity, JHEP 06 (2015) 158 [arXiv:1412.6526] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  39. A.P. Braun, M. Larfors and P.-K. Oehlmann, Gauged 2-form symmetries in 6D SCFTs coupled to gravity, JHEP 12 (2021) 132 [arXiv:2106.13198] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  40. H.-C. Tarazi and C. Vafa, On The Finiteness of 6d Supergravity Landscape, arXiv:2106.10839 [INSPIRE].

  41. H.-C. Kim, G. Shiu and C. Vafa, Branes and the Swampland, Phys. Rev. D 100 (2019) 066006 [arXiv:1905.08261] [INSPIRE].

    Article ADS MathSciNet Google Scholar

  42. A.P. Braun, A. Collinucci and R. Valandro, The fate of U(1)’s at strong coupling in F-theory, JHEP 07 (2014) 028 [arXiv:1402.4054] [INSPIRE].

    Article ADS Google Scholar

  43. P. Arras, A. Grassi and T. Weigand, Terminal Singularities, Milnor Numbers, and Matter in F-theory, J. Geom. Phys. 123 (2018) 71 [arXiv:1612.05646] [INSPIRE].

    Article ADS MathSciNet Google Scholar

Download references

Acknowledgments

B.S. is grateful to Yuji Tachikawa and Alessandro Tomasiello for useful correspondences, to Jonathan Heckman, Paul Oehlmann, Fabian Ruehle, and Jiahua Tian for discussions, and to Fabian Ruehle and Paul Oehlmann for collaboration on a related project. We thank Paul Oehlmann for a reading of a preliminary draft. DRM is partially supported by the National Science Foundation Grant PHY-2014226.

Author information

Authors and Affiliations

  1. Department of Mathematics, University of California, Santa Barbara, CA, 93106, USA

    David R. Morrison & Benjamin Sung

  2. Department of Physics, University of California, Santa Barbara, CA, 93106, USA

    David R. Morrison

Authors
  1. David R. Morrison
  2. Benjamin Sung

Corresponding author

Correspondence to Benjamin Sung.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2310.11432

About this article

Cite this article

Morrison, D.R., Sung, B. On the frozen F-theory landscape. J. High Energ. Phys. 2024, 126 (2024). https://doi.org/10.1007/JHEP05(2024)126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/JHEP05(2024)126

Keywords

AltStyle によって変換されたページ (->オリジナル) /