Data/IntMap/Strict.hs

{-# LANGUAGE CPP #-}
#if !defined(TESTING) && __GLASGOW_HASKELL__ >= 703
{-# LANGUAGE Trustworthy #-}
#endif
-----------------------------------------------------------------------------
-- |
-- Module : Data.IntMap.Strict
-- Copyright : (c) Daan Leijen 2002
-- (c) Andriy Palamarchuk 2008
-- License : BSD-style
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- An efficient implementation of maps from integer keys to values
-- (dictionaries).
--
-- API of this module is strict in both the keys and the values.
-- If you need value-lazy maps, use "Data.IntMap.Lazy" instead.
-- The 'IntMap' type itself is shared between the lazy and strict modules,
-- meaning that the same 'IntMap' value can be passed to functions in
-- both modules (although that is rarely needed).
--
-- These modules are intended to be imported qualified, to avoid name
-- clashes with Prelude functions, e.g.
--
-- > import Data.IntMap.Strict (IntMap)
-- > import qualified Data.IntMap.Strict as IntMap
--
-- The implementation is based on /big-endian patricia trees/. This data
-- structure performs especially well on binary operations like 'union'
-- and 'intersection'. However, my benchmarks show that it is also
-- (much) faster on insertions and deletions when compared to a generic
-- size-balanced map implementation (see "Data.Map").
--
-- * Chris Okasaki and Andy Gill, \"/Fast Mergeable Integer Maps/\",
-- Workshop on ML, September 1998, pages 77-86,
-- <http://citeseer.ist.psu.edu/okasaki98fast.html>
--
-- * D.R. Morrison, \"/PATRICIA -- Practical Algorithm To Retrieve
-- Information Coded In Alphanumeric/\", Journal of the ACM, 15(4),
-- October 1968, pages 514-534.
--
-- Operation comments contain the operation time complexity in
-- the Big-O notation <http://en.wikipedia.org/wiki/Big_O_notation>.
-- Many operations have a worst-case complexity of /O(min(n,W))/.
-- This means that the operation can become linear in the number of
-- elements with a maximum of /W/ -- the number of bits in an 'Int'
-- (32 or 64).
--
-- Be aware that the 'Functor', 'Traversable' and 'Data' instances
-- are the same as for the "Data.IntMap.Lazy" module, so if they are used
-- on strict maps, the resulting maps will be lazy.
-----------------------------------------------------------------------------

-- See the notes at the beginning of Data.IntMap.Base.

module Data.IntMap.Strict (
 -- * Strictness properties
 -- $strictness

 -- * Map type
#if !defined(TESTING)
 IntMap, Key -- instance Eq,Show
#else
 IntMap(..), Key -- instance Eq,Show
#endif

 -- * Operators
 , (!), (\\)

 -- * Query
 , null
 , size
 , member
 , notMember
 , lookup
 , findWithDefault
 , lookupLT
 , lookupGT
 , lookupLE
 , lookupGE

 -- * Construction
 , empty
 , singleton

 -- ** Insertion
 , insert
 , insertWith
 , insertWithKey
 , insertLookupWithKey

 -- ** Delete\/Update
 , delete
 , adjust
 , adjustWithKey
 , update
 , updateWithKey
 , updateLookupWithKey
 , alter

 -- * Combine

 -- ** Union
 , union
 , unionWith
 , unionWithKey
 , unions
 , unionsWith

 -- ** Difference
 , difference
 , differenceWith
 , differenceWithKey

 -- ** Intersection
 , intersection
 , intersectionWith
 , intersectionWithKey

 -- ** Universal combining function
 , mergeWithKey

 -- * Traversal
 -- ** Map
 , map
 , mapWithKey
 , traverseWithKey
 , mapAccum
 , mapAccumWithKey
 , mapAccumRWithKey
 , mapKeys
 , mapKeysWith
 , mapKeysMonotonic

 -- * Folds
 , foldr
 , foldl
 , foldrWithKey
 , foldlWithKey
 -- ** Strict folds
 , foldr'
 , foldl'
 , foldrWithKey'
 , foldlWithKey'

 -- * Conversion
 , elems
 , keys
 , assocs
 , keysSet
 , fromSet

 -- ** Lists
 , toList
 , fromList
 , fromListWith
 , fromListWithKey

 -- ** Ordered lists
 , toAscList
 , toDescList
 , fromAscList
 , fromAscListWith
 , fromAscListWithKey
 , fromDistinctAscList

 -- * Filter
 , filter
 , filterWithKey
 , partition
 , partitionWithKey

 , mapMaybe
 , mapMaybeWithKey
 , mapEither
 , mapEitherWithKey

 , split
 , splitLookup

 -- * Submap
 , isSubmapOf, isSubmapOfBy
 , isProperSubmapOf, isProperSubmapOfBy

 -- * Min\/Max
 , findMin
 , findMax
 , deleteMin
 , deleteMax
 , deleteFindMin
 , deleteFindMax
 , updateMin
 , updateMax
 , updateMinWithKey
 , updateMaxWithKey
 , minView
 , maxView
 , minViewWithKey
 , maxViewWithKey

 -- * Debugging
 , showTree
 , showTreeWith
 ) where

import Prelude hiding (lookup,map,filter,foldr,foldl,null)

import Data.Bits
import Data.IntMap.Base hiding
 ( findWithDefault
 , singleton
 , insert
 , insertWith
 , insertWithKey
 , insertLookupWithKey
 , adjust
 , adjustWithKey
 , update
 , updateWithKey
 , updateLookupWithKey
 , alter
 , unionsWith
 , unionWith
 , unionWithKey
 , differenceWith
 , differenceWithKey
 , intersectionWith
 , intersectionWithKey
 , mergeWithKey
 , updateMinWithKey
 , updateMaxWithKey
 , updateMax
 , updateMin
 , map
 , mapWithKey
 , mapAccum
 , mapAccumWithKey
 , mapAccumRWithKey
 , mapKeysWith
 , mapMaybe
 , mapMaybeWithKey
 , mapEither
 , mapEitherWithKey
 , fromSet
 , fromList
 , fromListWith
 , fromListWithKey
 , fromAscList
 , fromAscListWith
 , fromAscListWithKey
 , fromDistinctAscList
 )
import qualified Data.IntSet.Base as IntSet
import Data.StrictPair

-- $strictness
--
-- This module satisfies the following strictness properties:
--
-- 1. Key and value arguments are evaluated to WHNF;
--
-- 2. Keys and values are evaluated to WHNF before they are stored in
-- the map.
--
-- Here are some examples that illustrate the first property:
--
-- > insertWith (\ new old -> old) k undefined m == undefined
-- > delete undefined m == undefined
--
-- Here are some examples that illustrate the second property:
--
-- > map (\ v -> undefined) m == undefined -- m is not empty
-- > mapKeys (\ k -> undefined) m == undefined -- m is not empty

{--------------------------------------------------------------------
 Query
--------------------------------------------------------------------}

-- | /O(min(n,W))/. The expression @('findWithDefault' def k map)@
-- returns the value at key @k@ or returns @def@ when the key is not an
-- element of the map.
--
-- > findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x'
-- > findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a'

-- See IntMap.Base.Note: Local 'go' functions and capturing]
findWithDefault :: a -> Key -> IntMap a -> a
findWithDefault def k = def `seq` k `seq` go
 where
 go (Bin p m l r) | nomatch k p m = def
 | zero k m = go l
 | otherwise = go r
 go (Tip kx x) | k == kx = x
 | otherwise = def
 go Nil = def

{--------------------------------------------------------------------
 Construction
--------------------------------------------------------------------}
-- | /O(1)/. A map of one element.
--
-- > singleton 1 'a' == fromList [(1, 'a')]
-- > size (singleton 1 'a') == 1

singleton :: Key -> a -> IntMap a
singleton k x
 = x `seq` Tip k x
{-# INLINE singleton #-}

{--------------------------------------------------------------------
 Insert
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Insert a new key\/value pair in the map.
-- If the key is already present in the map, the associated value is
-- replaced with the supplied value, i.e. 'insert' is equivalent to
-- @'insertWith' 'const'@.
--
-- > insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')]
-- > insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')]
-- > insert 5 'x' empty == singleton 5 'x'

insert :: Key -> a -> IntMap a -> IntMap a
insert k x t = k `seq` x `seq`
 case t of
 Bin p m l r
 | nomatch k p m -> join k (Tip k x) p t
 | zero k m -> Bin p m (insert k x l) r
 | otherwise -> Bin p m l (insert k x r)
 Tip ky _
 | k==ky -> Tip k x
 | otherwise -> join k (Tip k x) ky t
 Nil -> Tip k x

-- right-biased insertion, used by 'union'
-- | /O(min(n,W))/. Insert with a combining function.
-- @'insertWith' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert @f new_value old_value@.
--
-- > insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")]
-- > insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWith (++) 5 "xxx" empty == singleton 5 "xxx"

insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWith f k x t
 = insertWithKey (\_ x' y' -> f x' y') k x t

-- | /O(min(n,W))/. Insert with a combining function.
-- @'insertWithKey' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert @f key new_value old_value@.
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")]
-- > insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWithKey f 5 "xxx" empty == singleton 5 "xxx"
--
-- If the key exists in the map, this function is lazy in @x@ but strict
-- in the result of @f@.

insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey f k x t = k `seq` x `seq`
 case t of
 Bin p m l r
 | nomatch k p m -> join k (Tip k x) p t
 | zero k m -> Bin p m (insertWithKey f k x l) r
 | otherwise -> Bin p m l (insertWithKey f k x r)
 Tip ky y
 | k==ky -> Tip k $! f k x y
 | otherwise -> join k (Tip k x) ky t
 Nil -> Tip k x

-- | /O(min(n,W))/. The expression (@'insertLookupWithKey' f k x map@)
-- is a pair where the first element is equal to (@'lookup' k map@)
-- and the second element equal to (@'insertWithKey' f k x map@).
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")])
-- > insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")])
-- > insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx")
--
-- This is how to define @insertLookup@ using @insertLookupWithKey@:
--
-- > let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t
-- > insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")])
-- > insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")])

insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey f0 k0 x0 t0 = k0 `seq` x0 `seq` toPair $ go f0 k0 x0 t0
 where
 go f k x t =
 case t of
 Bin p m l r
 | nomatch k p m -> Nothing :*: join k (Tip k x) p t
 | zero k m -> let (found :*: l') = go f k x l in (found :*: Bin p m l' r)
 | otherwise -> let (found :*: r') = go f k x r in (found :*: Bin p m l r')
 Tip ky y
 | k==ky -> (Just y :*: (Tip k $! f k x y))
 | otherwise -> (Nothing :*: join k (Tip k x) ky t)
 Nil -> Nothing :*: Tip k x


{--------------------------------------------------------------------
 Deletion
--------------------------------------------------------------------}
-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjust ("new " ++) 7 empty == empty

adjust :: (a -> a) -> Key -> IntMap a -> IntMap a
adjust f k m
 = adjustWithKey (\_ x -> f x) k m

-- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > let f key x = (show key) ++ ":new " ++ x
-- > adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjustWithKey f 7 empty == empty

adjustWithKey :: (Key -> a -> a) -> Key -> IntMap a -> IntMap a
adjustWithKey f
 = updateWithKey (\k' x -> Just (f k' x))

-- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f x = if x == "a" then Just "new a" else Nothing
-- > update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

update :: (a -> Maybe a) -> Key -> IntMap a -> IntMap a
update f
 = updateWithKey (\_ x -> f x)

-- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f k x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey f k t = k `seq`
 case t of
 Bin p m l r
 | nomatch k p m -> t
 | zero k m -> bin p m (updateWithKey f k l) r
 | otherwise -> bin p m l (updateWithKey f k r)
 Tip ky y
 | k==ky -> case f k y of
 Just y' -> y' `seq` Tip ky y'
 Nothing -> Nil
 | otherwise -> t
 Nil -> Nil

-- | /O(min(n,W))/. Lookup and update.
-- The function returns original value, if it is updated.
-- This is different behavior than 'Data.Map.updateLookupWithKey'.
-- Returns the original key value if the map entry is deleted.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:new a")])
-- > updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")])
-- > updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")

updateLookupWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a,IntMap a)
updateLookupWithKey f0 k0 t0 = k0 `seq` toPair $ go f0 k0 t0
 where
 go f k t =
 case t of
 Bin p m l r
 | nomatch k p m -> (Nothing :*: t)
 | zero k m -> let (found :*: l') = go f k l in (found :*: bin p m l' r)
 | otherwise -> let (found :*: r') = go f k r in (found :*: bin p m l r')
 Tip ky y
 | k==ky -> case f k y of
 Just y' -> y' `seq` (Just y :*: Tip ky y')
 Nothing -> (Just y :*: Nil)
 | otherwise -> (Nothing :*: t)
 Nil -> (Nothing :*: Nil)



-- | /O(log n)/. The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof.
-- 'alter' can be used to insert, delete, or update a value in an 'IntMap'.
-- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@.
alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a
alter f k t = k `seq`
 case t of
 Bin p m l r
 | nomatch k p m -> case f Nothing of
 Nothing -> t
 Just x -> x `seq` join k (Tip k x) p t
 | zero k m -> bin p m (alter f k l) r
 | otherwise -> bin p m l (alter f k r)
 Tip ky y
 | k==ky -> case f (Just y) of
 Just x -> x `seq` Tip ky x
 Nothing -> Nil
 | otherwise -> case f Nothing of
 Just x -> x `seq` join k (Tip k x) ky t
 Nothing -> t
 Nil -> case f Nothing of
 Just x -> x `seq` Tip k x
 Nothing -> Nil


{--------------------------------------------------------------------
 Union
--------------------------------------------------------------------}
-- | The union of a list of maps, with a combining operation.
--
-- > unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- > == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]

unionsWith :: (a->a->a) -> [IntMap a] -> IntMap a
unionsWith f ts
 = foldlStrict (unionWith f) empty ts

-- | /O(n+m)/. The union with a combining function.
--
-- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]

unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith f m1 m2
 = unionWithKey (\_ x y -> f x y) m1 m2

-- | /O(n+m)/. The union with a combining function.
--
-- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value
-- > unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]

unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey f m1 m2
 = mergeWithKey' Bin (\(Tip k1 x1) (Tip _k2 x2) -> Tip k1 $! f k1 x1 x2) id id m1 m2

{--------------------------------------------------------------------
 Difference
--------------------------------------------------------------------}

-- | /O(n+m)/. Difference with a combining function.
--
-- > let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing
-- > differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")])
-- > == singleton 3 "b:B"

differenceWith :: (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWith f m1 m2
 = differenceWithKey (\_ x y -> f x y) m1 m2

-- | /O(n+m)/. Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the key and both values.
-- If it returns 'Nothing', the element is discarded (proper set difference).
-- If it returns (@'Just' y@), the element is updated with a new value @y@.
--
-- > let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing
-- > differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")])
-- > == singleton 3 "3:b|B"

differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey f m1 m2
 = mergeWithKey f id (const Nil) m1 m2

{--------------------------------------------------------------------
 Intersection
--------------------------------------------------------------------}

-- | /O(n+m)/. The intersection with a combining function.
--
-- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

intersectionWith :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWith f m1 m2
 = intersectionWithKey (\_ x y -> f x y) m1 m2

-- | /O(n+m)/. The intersection with a combining function.
--
-- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar
-- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"

intersectionWithKey :: (Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey f m1 m2
 = mergeWithKey' bin (\(Tip k1 x1) (Tip _k2 x2) -> Tip k1 $! f k1 x1 x2) (const Nil) (const Nil) m1 m2

{--------------------------------------------------------------------
 MergeWithKey
--------------------------------------------------------------------}

-- | /O(n+m)/. A high-performance universal combining function. Using
-- 'mergeWithKey', all combining functions can be defined without any loss of
-- efficiency (with exception of 'union', 'difference' and 'intersection',
-- where sharing of some nodes is lost with 'mergeWithKey').
--
-- Please make sure you know what is going on when using 'mergeWithKey',
-- otherwise you can be surprised by unexpected code growth or even
-- corruption of the data structure.
--
-- When 'mergeWithKey' is given three arguments, it is inlined to the call
-- site. You should therefore use 'mergeWithKey' only to define your custom
-- combining functions. For example, you could define 'unionWithKey',
-- 'differenceWithKey' and 'intersectionWithKey' as
--
-- > myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2
-- > myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2
-- > myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2
--
-- When calling @'mergeWithKey' combine only1 only2@, a function combining two
-- 'IntMap's is created, such that
--
-- * if a key is present in both maps, it is passed with both corresponding
-- values to the @combine@ function. Depending on the result, the key is either
-- present in the result with specified value, or is left out;
--
-- * a nonempty subtree present only in the first map is passed to @only1@ and
-- the output is added to the result;
--
-- * a nonempty subtree present only in the second map is passed to @only2@ and
-- the output is added to the result.
--
-- The @only1@ and @only2@ methods /must return a map with a subset (possibly empty) of the keys of the given map/.
-- The values can be modified arbitrarily. Most common variants of @only1@ and
-- @only2@ are 'id' and @'const' 'empty'@, but for example @'map' f@ or
-- @'filterWithKey' f@ could be used for any @f@.

mergeWithKey :: (Key -> a -> b -> Maybe c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c)
 -> IntMap a -> IntMap b -> IntMap c
mergeWithKey f g1 g2 = mergeWithKey' bin combine g1 g2
 where -- We use the lambda form to avoid non-exhaustive pattern matches warning.
 combine = \(Tip k1 x1) (Tip _k2 x2) -> case f k1 x1 x2 of Nothing -> Nil
 Just x -> x `seq` Tip k1 x
 {-# INLINE combine #-}
{-# INLINE mergeWithKey #-}

{--------------------------------------------------------------------
 Min\/Max
--------------------------------------------------------------------}

-- | /O(log n)/. Update the value at the minimal key.
--
-- > updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")]
-- > updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMinWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a
updateMinWithKey f t =
 case t of Bin p m l r | m < 0 -> bin p m l (go f r)
 _ -> go f t
 where
 go f' (Bin p m l r) = bin p m (go f' l) r
 go f' (Tip k y) = case f' k y of
 Just y' -> y' `seq` Tip k y'
 Nothing -> Nil
 go _ Nil = error "updateMinWithKey Nil"

-- | /O(log n)/. Update the value at the maximal key.
--
-- > updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")]
-- > updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMaxWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a
updateMaxWithKey f t =
 case t of Bin p m l r | m < 0 -> bin p m (go f l) r
 _ -> go f t
 where
 go f' (Bin p m l r) = bin p m l (go f' r)
 go f' (Tip k y) = case f' k y of
 Just y' -> y' `seq` Tip k y'
 Nothing -> Nil
 go _ Nil = error "updateMaxWithKey Nil"

-- | /O(log n)/. Update the value at the maximal key.
--
-- > updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")]
-- > updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"

updateMax :: (a -> Maybe a) -> IntMap a -> IntMap a
updateMax f = updateMaxWithKey (const f)

-- | /O(log n)/. Update the value at the minimal key.
--
-- > updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")]
-- > updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateMin :: (a -> Maybe a) -> IntMap a -> IntMap a
updateMin f = updateMinWithKey (const f)


{--------------------------------------------------------------------
 Mapping
--------------------------------------------------------------------}
-- | /O(n)/. Map a function over all values in the map.
--
-- > map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]

map :: (a -> b) -> IntMap a -> IntMap b
map f t
 = case t of
 Bin p m l r -> Bin p m (map f l) (map f r)
 Tip k x -> Tip k $! f x
 Nil -> Nil

-- | /O(n)/. Map a function over all values in the map.
--
-- > let f key x = (show key) ++ ":" ++ x
-- > mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")]

mapWithKey :: (Key -> a -> b) -> IntMap a -> IntMap b
mapWithKey f t
 = case t of
 Bin p m l r -> Bin p m (mapWithKey f l) (mapWithKey f r)
 Tip k x -> Tip k $! f k x
 Nil -> Nil

-- | /O(n)/. The function @'mapAccum'@ threads an accumulating
-- argument through the map in ascending order of keys.
--
-- > let f a b = (a ++ b, b ++ "X")
-- > mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])

mapAccum :: (a -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccum f = mapAccumWithKey (\a' _ x -> f a' x)

-- | /O(n)/. The function @'mapAccumWithKey'@ threads an accumulating
-- argument through the map in ascending order of keys.
--
-- > let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X")
-- > mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")])

mapAccumWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumWithKey f a t
 = mapAccumL f a t

-- | /O(n)/. The function @'mapAccumL'@ threads an accumulating
-- argument through the map in ascending order of keys. Strict in
-- the accumulating argument and the both elements of the
-- result of the function.
mapAccumL :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumL f0 a0 t0 = toPair $ go f0 a0 t0
 where
 go f a t
 = case t of
 Bin p m l r -> let (a1 :*: l') = go f a l
 (a2 :*: r') = go f a1 r
 in (a2 :*: Bin p m l' r')
 Tip k x -> let (a',x') = f a k x in x' `seq` (a' :*: Tip k x')
 Nil -> (a :*: Nil)

-- | /O(n)/. The function @'mapAccumR'@ threads an accumulating
-- argument through the map in descending order of keys.
mapAccumRWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumRWithKey f0 a0 t0 = toPair $ go f0 a0 t0
 where
 go f a t
 = case t of
 Bin p m l r -> let (a1 :*: r') = go f a r
 (a2 :*: l') = go f a1 l
 in (a2 :*: Bin p m l' r')
 Tip k x -> let (a',x') = f a k x in x' `seq` (a' :*: Tip k x')
 Nil -> (a :*: Nil)

-- | /O(n*log n)/.
-- @'mapKeysWith' c f s@ is the map obtained by applying @f@ to each key of @s@.
--
-- The size of the result may be smaller if @f@ maps two or more distinct
-- keys to the same new key. In this case the associated values will be
-- combined using @c@.
--
-- > mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab"
-- > mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab"

mapKeysWith :: (a -> a -> a) -> (Key->Key) -> IntMap a -> IntMap a
mapKeysWith c f = fromListWith c . foldrWithKey (\k x xs -> (f k, x) : xs) []

{--------------------------------------------------------------------
 Filter
--------------------------------------------------------------------}
-- | /O(n)/. Map values and collect the 'Just' results.
--
-- > let f x = if x == "a" then Just "new a" else Nothing
-- > mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"

mapMaybe :: (a -> Maybe b) -> IntMap a -> IntMap b
mapMaybe f = mapMaybeWithKey (\_ x -> f x)

-- | /O(n)/. Map keys\/values and collect the 'Just' results.
--
-- > let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing
-- > mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"

mapMaybeWithKey :: (Key -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey f (Bin p m l r)
 = bin p m (mapMaybeWithKey f l) (mapMaybeWithKey f r)
mapMaybeWithKey f (Tip k x) = case f k x of
 Just y -> y `seq` Tip k y
 Nothing -> Nil
mapMaybeWithKey _ Nil = Nil

-- | /O(n)/. Map values and separate the 'Left' and 'Right' results.
--
-- > let f a = if a < "c" then Left a else Right a
-- > mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- > == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")])
-- >
-- > mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- > == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])

mapEither :: (a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
mapEither f m
 = mapEitherWithKey (\_ x -> f x) m

-- | /O(n)/. Map keys\/values and separate the 'Left' and 'Right' results.
--
-- > let f k a = if k < 5 then Left (k * 2) else Right (a ++ a)
-- > mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- > == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")])
-- >
-- > mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
-- > == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")])

mapEitherWithKey :: (Key -> a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
mapEitherWithKey f0 t0 = toPair $ go f0 t0
 where
 go f (Bin p m l r)
 = bin p m l1 r1 :*: bin p m l2 r2
 where
 (l1 :*: l2) = go f l
 (r1 :*: r2) = go f r
 go f (Tip k x) = case f k x of
 Left y -> y `seq` (Tip k y :*: Nil)
 Right z -> z `seq` (Nil :*: Tip k z)
 go _ Nil = (Nil :*: Nil)

{--------------------------------------------------------------------
 Conversions
--------------------------------------------------------------------}

-- | /O(n)/. Build a map from a set of keys and a function which for each key
-- computes its value.
--
-- > fromSet (\k -> replicate k 'a') (Data.IntSet.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")]
-- > fromSet undefined Data.IntSet.empty == empty

fromSet :: (Key -> a) -> IntSet.IntSet -> IntMap a
fromSet _ IntSet.Nil = Nil
fromSet f (IntSet.Bin p m l r) = Bin p m (fromSet f l) (fromSet f r)
fromSet f (IntSet.Tip kx bm) = buildTree f kx bm (IntSet.suffixBitMask + 1)
 where -- This is slightly complicated, as we to convert the dense
 -- representation of IntSet into tree representation of IntMap.
 --
 -- We are given a nonzero bit mask 'bmask' of 'bits' bits with prefix 'prefix'.
 -- We split bmask into halves corresponding to left and right subtree.
 -- If they are both nonempty, we create a Bin node, otherwise exactly
 -- one of them is nonempty and we construct the IntMap from that half.
 buildTree g prefix bmask bits = prefix `seq` bmask `seq` case bits of
 0 -> Tip prefix $! g prefix
 _ -> case intFromNat ((natFromInt bits) `shiftRL` 1) of
 bits2 | bmask .&. ((1 `shiftLL` bits2) - 1) == 0 ->
 buildTree g (prefix + bits2) (bmask `shiftRL` bits2) bits2
 | (bmask `shiftRL` bits2) .&. ((1 `shiftLL` bits2) - 1) == 0 ->
 buildTree g prefix bmask bits2
 | otherwise ->
 Bin prefix bits2 (buildTree g prefix bmask bits2) (buildTree g (prefix + bits2) (bmask `shiftRL` bits2) bits2)

{--------------------------------------------------------------------
 Lists
--------------------------------------------------------------------}
-- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs.
--
-- > fromList [] == empty
-- > fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")]
-- > fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]

fromList :: [(Key,a)] -> IntMap a
fromList xs
 = foldlStrict ins empty xs
 where
 ins t (k,x) = insert k x t

-- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs with a combining function. See also 'fromAscListWith'.
--
-- > fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")]
-- > fromListWith (++) [] == empty

fromListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWith f xs
 = fromListWithKey (\_ x y -> f x y) xs

-- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs with a combining function. See also fromAscListWithKey'.
--
-- > fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")]
-- > fromListWith (++) [] == empty

fromListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWithKey f xs
 = foldlStrict ins empty xs
 where
 ins t (k,x) = insertWithKey f k x t

-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order.
--
-- > fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]
-- > fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")]

fromAscList :: [(Key,a)] -> IntMap a
fromAscList xs
 = fromAscListWithKey (\_ x _ -> x) xs

-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order, with a combining function on equal keys.
-- /The precondition (input list is ascending) is not checked./
--
-- > fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]

fromAscListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWith f xs
 = fromAscListWithKey (\_ x y -> f x y) xs

-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order, with a combining function on equal keys.
-- /The precondition (input list is ascending) is not checked./
--
-- > fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]

fromAscListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWithKey _ [] = Nil
fromAscListWithKey f (x0 : xs0) = fromDistinctAscList (combineEq x0 xs0)
 where
 -- [combineEq f xs] combines equal elements with function [f] in an ordered list [xs]
 combineEq z [] = [z]
 combineEq z@(kz,zz) (x@(kx,xx):xs)
 | kx==kz = let yy = f kx xx zz in yy `seq` combineEq (kx,yy) xs
 | otherwise = z:combineEq x xs

-- | /O(n)/. Build a map from a list of key\/value pairs where
-- the keys are in ascending order and all distinct.
-- /The precondition (input list is strictly ascending) is not checked./
--
-- > fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]

fromDistinctAscList :: [(Key,a)] -> IntMap a
fromDistinctAscList [] = Nil
fromDistinctAscList (z0 : zs0) = work z0 zs0 Nada
 where
 work (kx,vx) [] stk = vx `seq` finish kx (Tip kx vx) stk
 work (kx,vx) (z@(kz,_):zs) stk = vx `seq` reduce z zs (branchMask kx kz) kx (Tip kx vx) stk

 reduce :: (Key,a) -> [(Key,a)] -> Mask -> Prefix -> IntMap a -> Stack a -> IntMap a
 reduce z zs _ px tx Nada = work z zs (Push px tx Nada)
 reduce z zs m px tx stk@(Push py ty stk') =
 let mxy = branchMask px py
 pxy = mask px mxy
 in if shorter m mxy
 then reduce z zs m pxy (Bin pxy mxy ty tx) stk'
 else work z zs (Push px tx stk)

 finish _ t Nada = t
 finish px tx (Push py ty stk) = finish p (join py ty px tx) stk
 where m = branchMask px py
 p = mask px m

data Stack a = Push {-# UNPACK #-} !Prefix !(IntMap a) !(Stack a) | Nada

AltStyle によって変換されたページ (->オリジナル) /