Control/Monad.hs
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : Control.Monad
-- Copyright : (c) The University of Glasgow 2001
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : provisional
-- Portability : portable
--
-- The 'Functor', 'Monad' and 'MonadPlus' classes,
-- with some useful operations on monads.
module Control.Monad
(
-- * Functor and monad classes
Functor(fmap)
, Monad((>>=), (>>), return, fail)
, MonadPlus(mzero, mplus)
-- * Functions
-- ** Naming conventions
-- $naming
-- ** Basic @Monad@ functions
, mapM
, mapM_
, forM
, forM_
, sequence
, sequence_
, (=<<)
, (>=>)
, (<=<)
, forever
, void
-- ** Generalisations of list functions
, join
, msum
, mfilter
, filterM
, mapAndUnzipM
, zipWithM
, zipWithM_
, foldM
, foldM_
, replicateM
, replicateM_
-- ** Conditional execution of monadic expressions
, guard
, when
, unless
-- ** Monadic lifting operators
, liftM
, liftM2
, liftM3
, liftM4
, liftM5
, ap
-- ** Strict monadic functions
, (<$!>)
) where
import Data.Foldable ( Foldable, sequence_, msum, mapM_, foldlM, forM_ )
import Data.Functor ( void )
import Data.Traversable ( forM, mapM, sequence )
import GHC.Base hiding ( mapM, sequence )
import GHC.List ( zipWith, unzip, replicate )
-- -----------------------------------------------------------------------------
-- Functions mandated by the Prelude
-- | @'guard' b@ is @'pure' ()@ if @b@ is 'True',
-- and 'empty' if @b@ is 'False'.
guard :: (Alternative f) => Bool -> f ()
guard True = pure ()
guard False = empty
-- | This generalizes the list-based 'filter' function.
{-# INLINE filterM #-}
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
filterM p = foldr go (return [])
where
go x r = do
flg <- p x
ys <- r
return (if flg then x:ys else ys)
infixr 1 <=<, >=>
-- | Left-to-right Kleisli composition of monads.
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g = \x -> f x >>= g
-- | Right-to-left Kleisli composition of monads. @('>=>')@, with the arguments flipped
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)
(<=<) = flip (>=>)
-- | @'forever' act@ repeats the action infinitely.
forever :: (Monad m) => m a -> m b
{-# INLINE forever #-}
forever a = let a' = a >> a' in a'
-- Use explicit sharing here, as it is prevents a space leak regardless of
-- optimizations.
-- -----------------------------------------------------------------------------
-- Other monad functions
-- | The 'mapAndUnzipM' function maps its first argument over a list, returning
-- the result as a pair of lists. This function is mainly used with complicated
-- data structures or a state-transforming monad.
mapAndUnzipM :: (Monad m) => (a -> m (b,c)) -> [a] -> m ([b], [c])
{-# INLINE mapAndUnzipM #-}
mapAndUnzipM f xs = sequence (map f xs) >>= return . unzip
-- | The 'zipWithM' function generalizes 'zipWith' to arbitrary monads.
zipWithM :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m [c]
{-# INLINE zipWithM #-}
zipWithM f xs ys = sequence (zipWith f xs ys)
-- | 'zipWithM_' is the extension of 'zipWithM' which ignores the final result.
zipWithM_ :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m ()
{-# INLINE zipWithM_ #-}
zipWithM_ f xs ys = sequence_ (zipWith f xs ys)
{- | The 'foldM' function is analogous to 'foldl', except that its result is
encapsulated in a monad. Note that 'foldM' works from left-to-right over
the list arguments. This could be an issue where @('>>')@ and the `folded
function' are not commutative.
> foldM f a1 [x1, x2, ..., xm]
==
> do
> a2 <- f a1 x1
> a3 <- f a2 x2
> ...
> f am xm
If right-to-left evaluation is required, the input list should be reversed.
Note: 'foldM' is the same as 'foldlM'
-}
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
{-# INLINEABLE foldM #-}
{-# SPECIALISE foldM :: (a -> b -> IO a) -> a -> [b] -> IO a #-}
{-# SPECIALISE foldM :: (a -> b -> Maybe a) -> a -> [b] -> Maybe a #-}
foldM = foldlM
-- | Like 'foldM', but discards the result.
foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
{-# INLINEABLE foldM_ #-}
{-# SPECIALISE foldM_ :: (a -> b -> IO a) -> a -> [b] -> IO () #-}
{-# SPECIALISE foldM_ :: (a -> b -> Maybe a) -> a -> [b] -> Maybe () #-}
foldM_ f a xs = foldlM f a xs >> return ()
-- | @'replicateM' n act@ performs the action @n@ times,
-- gathering the results.
replicateM :: (Monad m) => Int -> m a -> m [a]
{-# INLINEABLE replicateM #-}
{-# SPECIALISE replicateM :: Int -> IO a -> IO [a] #-}
{-# SPECIALISE replicateM :: Int -> Maybe a -> Maybe [a] #-}
replicateM n x = sequence (replicate n x)
-- | Like 'replicateM', but discards the result.
replicateM_ :: (Monad m) => Int -> m a -> m ()
{-# INLINEABLE replicateM_ #-}
{-# SPECIALISE replicateM_ :: Int -> IO a -> IO () #-}
{-# SPECIALISE replicateM_ :: Int -> Maybe a -> Maybe () #-}
replicateM_ n x = sequence_ (replicate n x)
-- | The reverse of 'when'.
unless :: (Applicative f) => Bool -> f () -> f ()
{-# INLINEABLE unless #-}
{-# SPECIALISE unless :: Bool -> IO () -> IO () #-}
{-# SPECIALISE unless :: Bool -> Maybe () -> Maybe () #-}
unless p s = if p then pure () else s
infixl 4 <$!>
-- | Strict version of 'Data.Functor.<$>'.
--
-- @since 4.8.0.0
(<$!>) :: Monad m => (a -> b) -> m a -> m b
{-# INLINE (<$!>) #-}
f <$!> m = do
x <- m
let z = f x
z `seq` return z
-- -----------------------------------------------------------------------------
-- Other MonadPlus functions
-- | Direct 'MonadPlus' equivalent of 'filter'
-- @'filter'@ = @(mfilter:: (a -> Bool) -> [a] -> [a]@
-- applicable to any 'MonadPlus', for example
-- @mfilter odd (Just 1) == Just 1@
-- @mfilter odd (Just 2) == Nothing@
mfilter :: (MonadPlus m) => (a -> Bool) -> m a -> m a
{-# INLINEABLE mfilter #-}
mfilter p ma = do
a <- ma
if p a then return a else mzero
{- $naming
The functions in this library use the following naming conventions:
* A postfix \'@M@\' always stands for a function in the Kleisli category:
The monad type constructor @m@ is added to function results
(modulo currying) and nowhere else. So, for example,
> filter :: (a -> Bool) -> [a] -> [a]
> filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
* A postfix \'@_@\' changes the result type from @(m a)@ to @(m ())@.
Thus, for example:
> sequence :: Monad m => [m a] -> m [a]
> sequence_ :: Monad m => [m a] -> m ()
* A prefix \'@m@\' generalizes an existing function to a monadic form.
Thus, for example:
> sum :: Num a => [a] -> a
> msum :: MonadPlus m => [m a] -> m a
-}