GHC/IO/Encoding/Failure.hs

{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude #-}

-----------------------------------------------------------------------------
-- |
-- Module : GHC.IO.Encoding.Failure
-- Copyright : (c) The University of Glasgow, 2008-2011
-- License : see libraries/base/LICENSE
--
-- Maintainer : libraries@haskell.org
-- Stability : internal
-- Portability : non-portable
--
-- Types for specifying how text encoding/decoding fails
--
-----------------------------------------------------------------------------

module GHC.IO.Encoding.Failure (
 CodingFailureMode(..), codingFailureModeSuffix,
 isSurrogate,
 recoverDecode, recoverEncode
 ) where

import GHC.IO
import GHC.IO.Buffer
import GHC.IO.Exception

import GHC.Base
import GHC.Char
import GHC.Word
import GHC.Show
import GHC.Num
import GHC.Real ( fromIntegral )

--import System.Posix.Internals

-- | The 'CodingFailureMode' is used to construct 'System.IO.TextEncoding's,
-- and specifies how they handle illegal sequences.
data CodingFailureMode
 = ErrorOnCodingFailure
 -- ^ Throw an error when an illegal sequence is encountered
 | IgnoreCodingFailure
 -- ^ Attempt to ignore and recover if an illegal sequence is
 -- encountered
 | TransliterateCodingFailure
 -- ^ Replace with the closest visual match upon an illegal
 -- sequence
 | RoundtripFailure
 -- ^ Use the private-use escape mechanism to attempt to allow
 -- illegal sequences to be roundtripped.
 deriving ( Show -- ^ @since 4.4.0.0
 )
 -- This will only work properly for those encodings which are
 -- strict supersets of ASCII in the sense that valid ASCII data
 -- is also valid in that encoding. This is not true for
 -- e.g. UTF-16, because ASCII characters must be padded to two
 -- bytes to retain their meaning.

-- Note [Roundtripping]
-- ~~~~~~~~~~~~~~~~~~~~
--
-- Roundtripping is based on the ideas of PEP383.
--
-- We used to use the range of private-use characters from 0xEF80 to
-- 0xEFFF designated for "encoding hacks" by the ConScript Unicode Registery
-- to encode these characters.
--
-- However, people didn't like this because it means we don't get
-- guaranteed roundtripping for byte sequences that look like a UTF-8
-- encoded codepoint 0xEFxx.
--
-- So now like PEP383 we use lone surrogate codepoints 0xDCxx to escape
-- undecodable bytes, even though that may confuse Unicode processing
-- software written in Haskell. This guarantees roundtripping because
-- unicode input that includes lone surrogate codepoints is invalid by
-- definition.
--
--
-- When we used private-use characters there was a technical problem when it
-- came to encoding back to bytes using iconv. The iconv code will not fail when
-- it tries to encode a private-use character (as it would if trying to encode
-- a surrogate), which means that we wouldn't get a chance to replace it
-- with the byte we originally escaped.
--
-- To work around this, when filling the buffer to be encoded (in
-- writeBlocks/withEncodedCString/newEncodedCString), we replaced the
-- private-use characters with lone surrogates again! Likewise, when
-- reading from a buffer (unpack/unpack_nl/peekEncodedCString) we had
-- to do the inverse process.
--
-- The user of String would never see these lone surrogates, but it
-- ensured that iconv will throw an error when encountering them. We
-- used lone surrogates in the range 0xDC00 to 0xDCFF for this purpose.

codingFailureModeSuffix :: CodingFailureMode -> String
codingFailureModeSuffix ErrorOnCodingFailure = ""
codingFailureModeSuffix IgnoreCodingFailure = "//IGNORE"
codingFailureModeSuffix TransliterateCodingFailure = "//TRANSLIT"
codingFailureModeSuffix RoundtripFailure = "//ROUNDTRIP"

-- | In transliterate mode, we use this character when decoding
-- unknown bytes.
--
-- This is the defined Unicode replacement character:
-- <http://www.fileformat.info/info/unicode/char/0fffd/index.htm>
unrepresentableChar :: Char
unrepresentableChar = '\xFFFD'

-- It is extraordinarily important that this series of
-- predicates/transformers gets inlined, because they tend to be used
-- in inner loops related to text encoding. In particular,
-- surrogatifyRoundtripCharacter must be inlined (see #5536)

-- | Some characters are actually "surrogate" codepoints defined for
-- use in UTF-16. We need to signal an invalid character if we detect
-- them when encoding a sequence of 'Char's into 'Word8's because they
-- won't give valid Unicode.
--
-- We may also need to signal an invalid character if we detect them
-- when encoding a sequence of 'Char's into 'Word8's because the
-- 'RoundtripFailure' mode creates these to round-trip bytes through
-- our internal UTF-16 encoding.
{-# INLINE isSurrogate #-}
isSurrogate :: Char -> Bool
isSurrogate c = (0xD800 <= x && x <= 0xDBFF)
 || (0xDC00 <= x && x <= 0xDFFF)
 where x = ord c

-- Bytes (in Buffer Word8) --> lone surrogates (in Buffer CharBufElem)
{-# INLINE escapeToRoundtripCharacterSurrogate #-}
escapeToRoundtripCharacterSurrogate :: Word8 -> Char
escapeToRoundtripCharacterSurrogate b
 | b < 128 = chr (fromIntegral b)
 -- Disallow 'smuggling' of ASCII bytes. For roundtripping to
 -- work, this assumes encoding is ASCII-superset.
 | otherwise = chr (0xDC00 + fromIntegral b)

-- Lone surrogates (in Buffer CharBufElem) --> bytes (in Buffer Word8)
{-# INLINE unescapeRoundtripCharacterSurrogate #-}
unescapeRoundtripCharacterSurrogate :: Char -> Maybe Word8
unescapeRoundtripCharacterSurrogate c
 | 0xDC80 <= x && x < 0xDD00 = Just (fromIntegral x) -- Discard high byte
 | otherwise = Nothing
 where x = ord c

recoverDecode :: CodingFailureMode -> Buffer Word8 -> Buffer Char
 -> IO (Buffer Word8, Buffer Char)
recoverDecode cfm input@Buffer{ bufRaw=iraw, bufL=ir, bufR=_ }
 output@Buffer{ bufRaw=oraw, bufL=_, bufR=ow } = do
 --puts $ "recoverDecode " ++ show ir
 case cfm of
 ErrorOnCodingFailure -> ioe_decodingError
 IgnoreCodingFailure -> return (input { bufL=ir+1 }, output)
 TransliterateCodingFailure -> do
 ow' <- writeCharBuf oraw ow unrepresentableChar
 return (input { bufL=ir+1 }, output { bufR=ow' })
 RoundtripFailure -> do
 b <- readWord8Buf iraw ir
 ow' <- writeCharBuf oraw ow (escapeToRoundtripCharacterSurrogate b)
 return (input { bufL=ir+1 }, output { bufR=ow' })

recoverEncode :: CodingFailureMode -> Buffer Char -> Buffer Word8
 -> IO (Buffer Char, Buffer Word8)
recoverEncode cfm input@Buffer{ bufRaw=iraw, bufL=ir, bufR=_ }
 output@Buffer{ bufRaw=oraw, bufL=_, bufR=ow } = do
 (c,ir') <- readCharBuf iraw ir
 --puts $ "recoverEncode " ++ show ir ++ " " ++ show ir'
 case cfm of
 IgnoreCodingFailure -> return (input { bufL=ir' }, output)
 TransliterateCodingFailure -> do
 if c == '?'
 then return (input { bufL=ir' }, output)
 else do
 -- XXX: evil hack! To implement transliteration, we just
 -- poke an ASCII ? into the input buffer and tell the caller
 -- to try and decode again. This is *probably* safe given
 -- current uses of TextEncoding.
 --
 -- The "if" test above ensures we skip if the encoding fails
 -- to deal with the ?, though this should never happen in
 -- practice as all encodings are in fact capable of
 -- reperesenting all ASCII characters.
 _ir' <- writeCharBuf iraw ir '?'
 return (input, output)

 -- This implementation does not work because e.g. UTF-16
 -- requires 2 bytes to encode a simple ASCII value
 --writeWord8Buf oraw ow unrepresentableByte
 --return (input { bufL=ir' }, output { bufR=ow+1 })
 RoundtripFailure | Just x <- unescapeRoundtripCharacterSurrogate c -> do
 writeWord8Buf oraw ow x
 return (input { bufL=ir' }, output { bufR=ow+1 })
 _ -> ioe_encodingError

ioe_decodingError :: IO a
ioe_decodingError = ioException
 (IOError Nothing InvalidArgument "recoverDecode"
 "invalid byte sequence" Nothing Nothing)

ioe_encodingError :: IO a
ioe_encodingError = ioException
 (IOError Nothing InvalidArgument "recoverEncode"
 "invalid character" Nothing Nothing)

AltStyle によって変換されたページ (->オリジナル) /