@@ -21,6 +21,7 @@ Note: the project aims at imitating the well-implemented algorithms in [Deep Lea
21
21
- SqueezeNet [[ self] ( https://github.com/xiaohu2015/DeepLearning_tutorials/blob/master/CNNs/SqueezeNet.py ) [ paper] ( https://arxiv.org/abs/1602.07360 )]
22
22
- ResNet [[ self] ( https://github.com/xiaohu2015/DeepLearning_tutorials/blob/master/CNNs/ResNet50.py ) [ caffe ref] ( https://github.com/KaimingHe/deep-residual-networks ) [ paper1] ( https://arxiv.org/abs/1512.03385 ) [ paper2] ( https://arxiv.org/abs/1603.05027 )]
23
23
- ShuffleNet [[ self] ( https://github.com/xiaohu2015/DeepLearning_tutorials/blob/master/CNNs/ShuffleNet.py ) by pytorch [ paper] ( http://cn.arxiv.org/pdf/1707.01083v2 )]
24
+ - ShuffleNetv2 [[ self] ( https://github.com/xiaohu2015/DeepLearning_tutorials/blob/master/CNNs/shufflenet_v2.py ) [ ref] ( https://github.com/tensorpack/tensorpack/blob/master/examples/ImageNetModels/shufflenet.py ) [ paper] ( https://arxiv.org/abs/1807.11164 )]
24
25
- DenseNet [[ self] ( https://github.com/xiaohu2015/DeepLearning_tutorials/blob/master/CNNs/densenet.py ) [ pytorch_ref] ( https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py ) [ paper] ( https://arxiv.org/abs/1608.06993 )]
25
26
26
27
### Object detection
0 commit comments