|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "---\n", |
| 8 | + "\n", |
| 9 | + "_You are currently looking at **version 1.0** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the [Jupyter Notebook FAQ](https://www.coursera.org/learn/python-text-mining/resources/d9pwm) course resource._\n", |
| 10 | + "\n", |
| 11 | + "---" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "# Assignment 1\n", |
| 19 | + "\n", |
| 20 | + "In this assignment, you'll be working with messy medical data and using regex to extract relevant infromation from the data. \n", |
| 21 | + "\n", |
| 22 | + "Each line of the `dates.txt` file corresponds to a medical note. Each note has a date that needs to be extracted, but each date is encoded in one of many formats.\n", |
| 23 | + "\n", |
| 24 | + "The goal of this assignment is to correctly identify all of the different date variants encoded in this dataset and to properly normalize and sort the dates. \n", |
| 25 | + "\n", |
| 26 | + "Here is a list of some of the variants you might encounter in this dataset:\n", |
| 27 | + "* 04/20/2009; 04/20/09; 4/20/09; 4/3/09\n", |
| 28 | + "* Mar-20-2009; Mar 20, 2009; March 20, 2009; Mar. 20, 2009; Mar 20 2009;\n", |
| 29 | + "* 20 Mar 2009; 20 March 2009; 20 Mar. 2009; 20 March, 2009\n", |
| 30 | + "* Mar 20th, 2009; Mar 21st, 2009; Mar 22nd, 2009\n", |
| 31 | + "* Feb 2009; Sep 2009; Oct 2010\n", |
| 32 | + "* 6/2008; 12/2009\n", |
| 33 | + "* 2009; 2010\n", |
| 34 | + "\n", |
| 35 | + "Once you have extracted these date patterns from the text, the next step is to sort them in ascending chronological order accoring to the following rules:\n", |
| 36 | + "* Assume all dates in xx/xx/xx format are mm/dd/yy\n", |
| 37 | + "* Assume all dates where year is encoded in only two digits are years from the 1900's (e.g. 1/5/89 is January 5th, 1989)\n", |
| 38 | + "* If the day is missing (e.g. 9/2009), assume it is the first day of the month (e.g. September 1, 2009).\n", |
| 39 | + "* If the month is missing (e.g. 2010), assume it is the first of January of that year (e.g. January 1, 2010).\n", |
| 40 | + "\n", |
| 41 | + "With these rules in mind, find the correct date in each note and return a pandas Series in chronological order of the original Series' indices.\n", |
| 42 | + "\n", |
| 43 | + "For example if the original series was this:\n", |
| 44 | + "\n", |
| 45 | + " 0 1999\n", |
| 46 | + " 1 2010\n", |
| 47 | + " 2 1978\n", |
| 48 | + " 3 2015\n", |
| 49 | + " 4 1985\n", |
| 50 | + "\n", |
| 51 | + "Your function should return this:\n", |
| 52 | + "\n", |
| 53 | + " 0 2\n", |
| 54 | + " 1 4\n", |
| 55 | + " 2 0\n", |
| 56 | + " 3 1\n", |
| 57 | + " 4 3\n", |
| 58 | + "\n", |
| 59 | + "Your score will be calculated using [Kendall's tau](https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient), a correlation measure for ordinal data.\n", |
| 60 | + "\n", |
| 61 | + "*This function should return a Series of length 500 and dtype int.*" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": 1, |
| 67 | + "metadata": {}, |
| 68 | + "outputs": [ |
| 69 | + { |
| 70 | + "data": { |
| 71 | + "text/plain": [ |
| 72 | + "0 03/25/93 Total time of visit (in minutes):\\n\n", |
| 73 | + "1 6/18/85 Primary Care Doctor:\\n\n", |
| 74 | + "2 sshe plans to move as of 7/8/71 In-Home Servic...\n", |
| 75 | + "3 7 on 9/27/75 Audit C Score Current:\\n\n", |
| 76 | + "4 2/6/96 sleep studyPain Treatment Pain Level (N...\n", |
| 77 | + "5 .Per 7/06/79 Movement D/O note:\\n\n", |
| 78 | + "6 4, 5/18/78 Patient's thoughts about current su...\n", |
| 79 | + "7 10/24/89 CPT Code: 90801 - Psychiatric Diagnos...\n", |
| 80 | + "8 3/7/86 SOS-10 Total Score:\\n\n", |
| 81 | + "9 (4/10/71)Score-1Audit C Score Current:\\n\n", |
| 82 | + "dtype: object" |
| 83 | + ] |
| 84 | + }, |
| 85 | + "execution_count": 1, |
| 86 | + "metadata": {}, |
| 87 | + "output_type": "execute_result" |
| 88 | + } |
| 89 | + ], |
| 90 | + "source": [ |
| 91 | + "import pandas as pd\n", |
| 92 | + "\n", |
| 93 | + "doc = []\n", |
| 94 | + "with open('dates.txt') as file:\n", |
| 95 | + " for line in file:\n", |
| 96 | + " doc.append(line)\n", |
| 97 | + "\n", |
| 98 | + "df = pd.Series(doc)\n", |
| 99 | + "df.head(10)" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": 2, |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [], |
| 107 | + "source": [ |
| 108 | + "def date_sorter():\n", |
| 109 | + " \n", |
| 110 | + " # Your code here\n", |
| 111 | + " # Full date\n", |
| 112 | + " global df\n", |
| 113 | + " dates_extracted = df.str.extractall(r'(?P<origin>(?P<month>\\d?\\d)[/|-](?P<day>\\d?\\d)[/|-](?P<year>\\d{4}))')\n", |
| 114 | + " index_left = ~df.index.isin([x[0] for x in dates_extracted.index])\n", |
| 115 | + " dates_extracted = dates_extracted.append(df[index_left].str.extractall(r'(?P<origin>(?P<month>\\d?\\d)[/|-](?P<day>([0-2]?[0-9])|([3][01]))[/|-](?P<year>\\d{2}))'))\n", |
| 116 | + " index_left = ~df.index.isin([x[0] for x in dates_extracted.index])\n", |
| 117 | + " del dates_extracted[3]\n", |
| 118 | + " del dates_extracted[4]\n", |
| 119 | + " dates_extracted = dates_extracted.append(df[index_left].str.extractall(r'(?P<origin>(?P<day>\\d?\\d) ?(?P<month>[a-zA-Z]{3,})\\.?,? (?P<year>\\d{4}))'))\n", |
| 120 | + " index_left = ~df.index.isin([x[0] for x in dates_extracted.index])\n", |
| 121 | + " dates_extracted = dates_extracted.append(df[index_left].str.extractall(r'(?P<origin>(?P<month>[a-zA-Z]{3,})\\.?-? ?(?P<day>\\d\\d?)(th|nd|st)?,?-? ?(?P<year>\\d{4}))'))\n", |
| 122 | + " del dates_extracted[3]\n", |
| 123 | + " index_left = ~df.index.isin([x[0] for x in dates_extracted.index])\n", |
| 124 | + "\n", |
| 125 | + " # Without day\n", |
| 126 | + " dates_without_day = df[index_left].str.extractall('(?P<origin>(?P<month>[A-Z][a-z]{2,}),?\\.? (?P<year>\\d{4}))')\n", |
| 127 | + " dates_without_day = dates_without_day.append(df[index_left].str.extractall(r'(?P<origin>(?P<month>\\d\\d?)/(?P<year>\\d{4}))'))\n", |
| 128 | + " dates_without_day['day'] = 1\n", |
| 129 | + " dates_extracted = dates_extracted.append(dates_without_day)\n", |
| 130 | + " index_left = ~df.index.isin([x[0] for x in dates_extracted.index])\n", |
| 131 | + "\n", |
| 132 | + " # Only year\n", |
| 133 | + " dates_only_year = df[index_left].str.extractall(r'(?P<origin>(?P<year>\\d{4}))')\n", |
| 134 | + " dates_only_year['day'] = 1\n", |
| 135 | + " dates_only_year['month'] = 1\n", |
| 136 | + " dates_extracted = dates_extracted.append(dates_only_year)\n", |
| 137 | + " index_left = ~df.index.isin([x[0] for x in dates_extracted.index])\n", |
| 138 | + "\n", |
| 139 | + " # Year\n", |
| 140 | + " dates_extracted['year'] = dates_extracted['year'].apply(lambda x: '19' + x if len(x) == 2 else x)\n", |
| 141 | + " dates_extracted['year'] = dates_extracted['year'].apply(lambda x: str(x))\n", |
| 142 | + "\n", |
| 143 | + " # Month\n", |
| 144 | + " dates_extracted['month'] = dates_extracted['month'].apply(lambda x: x[1:] if type(x) is str and x.startswith('0') else x)\n", |
| 145 | + " month_dict = dict({'September': 9, 'Mar': 3, 'November': 11, 'Jul': 7, 'January': 1, 'December': 12,\n", |
| 146 | + " 'Feb': 2, 'May': 5, 'Aug': 8, 'Jun': 6, 'Sep': 9, 'Oct': 10, 'June': 6, 'March': 3,\n", |
| 147 | + " 'February': 2, 'Dec': 12, 'Apr': 4, 'Jan': 1, 'Janaury': 1,'August': 8, 'October': 10,\n", |
| 148 | + " 'July': 7, 'Since': 1, 'Nov': 11, 'April': 4, 'Decemeber': 12, 'Age': 8})\n", |
| 149 | + " dates_extracted.replace({\"month\": month_dict}, inplace=True)\n", |
| 150 | + " dates_extracted['month'] = dates_extracted['month'].apply(lambda x: str(x))\n", |
| 151 | + "\n", |
| 152 | + " # Day\n", |
| 153 | + " dates_extracted['day'] = dates_extracted['day'].apply(lambda x: str(x))\n", |
| 154 | + "\n", |
| 155 | + " # Cleaned date\n", |
| 156 | + " dates_extracted['date'] = dates_extracted['month'] + '/' + dates_extracted['day'] + '/' + dates_extracted['year']\n", |
| 157 | + " dates_extracted['date'] = pd.to_datetime(dates_extracted['date'])\n", |
| 158 | + "\n", |
| 159 | + " dates_extracted.sort_values(by='date', inplace=True)\n", |
| 160 | + " df1 = pd.Series(list(dates_extracted.index.labels[0]))\n", |
| 161 | + " \n", |
| 162 | + " return df1# Your answer here" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "code", |
| 167 | + "execution_count": 3, |
| 168 | + "metadata": {}, |
| 169 | + "outputs": [ |
| 170 | + { |
| 171 | + "name": "stdout", |
| 172 | + "output_type": "stream", |
| 173 | + "text": [ |
| 174 | + "0 9\n", |
| 175 | + "1 84\n", |
| 176 | + "2 2\n", |
| 177 | + "3 53\n", |
| 178 | + "4 28\n", |
| 179 | + "5 474\n", |
| 180 | + "6 153\n", |
| 181 | + "7 13\n", |
| 182 | + "8 129\n", |
| 183 | + "9 98\n", |
| 184 | + "10 111\n", |
| 185 | + "11 225\n", |
| 186 | + "12 31\n", |
| 187 | + "13 171\n", |
| 188 | + "14 191\n", |
| 189 | + "15 486\n", |
| 190 | + "16 335\n", |
| 191 | + "17 415\n", |
| 192 | + "18 36\n", |
| 193 | + "19 405\n", |
| 194 | + "20 323\n", |
| 195 | + "21 422\n", |
| 196 | + "22 375\n", |
| 197 | + "23 380\n", |
| 198 | + "24 345\n", |
| 199 | + "25 57\n", |
| 200 | + "26 481\n", |
| 201 | + "27 436\n", |
| 202 | + "28 104\n", |
| 203 | + "29 299\n", |
| 204 | + " ... \n", |
| 205 | + "470 220\n", |
| 206 | + "471 243\n", |
| 207 | + "472 208\n", |
| 208 | + "473 139\n", |
| 209 | + "474 320\n", |
| 210 | + "475 383\n", |
| 211 | + "476 286\n", |
| 212 | + "477 244\n", |
| 213 | + "478 480\n", |
| 214 | + "479 431\n", |
| 215 | + "480 279\n", |
| 216 | + "481 198\n", |
| 217 | + "482 381\n", |
| 218 | + "483 463\n", |
| 219 | + "484 366\n", |
| 220 | + "485 439\n", |
| 221 | + "486 255\n", |
| 222 | + "487 401\n", |
| 223 | + "488 475\n", |
| 224 | + "489 257\n", |
| 225 | + "490 152\n", |
| 226 | + "491 235\n", |
| 227 | + "492 464\n", |
| 228 | + "493 253\n", |
| 229 | + "494 231\n", |
| 230 | + "495 427\n", |
| 231 | + "496 141\n", |
| 232 | + "497 186\n", |
| 233 | + "498 161\n", |
| 234 | + "499 413\n", |
| 235 | + "Length: 500, dtype: int64\n" |
| 236 | + ] |
| 237 | + } |
| 238 | + ], |
| 239 | + "source": [ |
| 240 | + "#print(date_sorter())" |
| 241 | + ] |
| 242 | + }, |
| 243 | + { |
| 244 | + "cell_type": "code", |
| 245 | + "execution_count": null, |
| 246 | + "metadata": { |
| 247 | + "collapsed": true |
| 248 | + }, |
| 249 | + "outputs": [], |
| 250 | + "source": [] |
| 251 | + } |
| 252 | + ], |
| 253 | + "metadata": { |
| 254 | + "coursera": { |
| 255 | + "course_slug": "python-text-mining", |
| 256 | + "graded_item_id": "LvcWI", |
| 257 | + "launcher_item_id": "krne9", |
| 258 | + "part_id": "Mkp1I" |
| 259 | + }, |
| 260 | + "kernelspec": { |
| 261 | + "display_name": "Python 3", |
| 262 | + "language": "python", |
| 263 | + "name": "python3" |
| 264 | + }, |
| 265 | + "language_info": { |
| 266 | + "codemirror_mode": { |
| 267 | + "name": "ipython", |
| 268 | + "version": 3 |
| 269 | + }, |
| 270 | + "file_extension": ".py", |
| 271 | + "mimetype": "text/x-python", |
| 272 | + "name": "python", |
| 273 | + "nbconvert_exporter": "python", |
| 274 | + "pygments_lexer": "ipython3", |
| 275 | + "version": "3.6.2" |
| 276 | + } |
| 277 | + }, |
| 278 | + "nbformat": 4, |
| 279 | + "nbformat_minor": 2 |
| 280 | +} |
0 commit comments