Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings
This repository was archived by the owner on Aug 15, 2019. It is now read-only.

Commit f135c5a

Browse files
LewuatheNikhil Thorat
authored and
Nikhil Thorat
committed
Add stft op (#1746)
FEATURE Add tf.signal.stft op. One TODO is passing fft length parameter because rfft does not support fft length parameter. We can pass fft length parameter after rfft supports it. See: tensorflow/tfjs#1362
1 parent 6a94672 commit f135c5a

File tree

2 files changed

+205
-0
lines changed

2 files changed

+205
-0
lines changed

‎src/ops/signal_ops.ts‎

Lines changed: 42 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,10 @@
1818
import {op} from '../ops/operation';
1919
import {Tensor, Tensor1D} from '../tensor';
2020

21+
import {mul} from './binary_ops';
2122
import {concat} from './concat_split';
2223
import {slice} from './slice';
24+
import {rfft} from './spectral_ops';
2325
import {fill, tensor1d, tensor2d} from './tensor_ops';
2426

2527
/**
@@ -94,6 +96,45 @@ function frame_(
9496
return concat(output).as2D(output.length, frameLength);
9597
}
9698

99+
/**
100+
* Computes the Short-time Fourier Transform of signals
101+
* See: https://en.wikipedia.org/wiki/Short-time_Fourier_transform
102+
*
103+
* ```js
104+
* const input = tf.tensor1d([1, 1, 1, 1, 1])
105+
* tf.signal.stft(input, 3, 1).print();
106+
* ```
107+
* @param signal 1-dimensional real value tensor.
108+
* @param frameLength The window length of samples.
109+
* @param frameStep The number of samples to step.
110+
* @param fftLength The size of the FFT to apply.
111+
* @param windowFn A callable that takes a window length and returns 1-d tensor.
112+
*/
113+
/**
114+
* @doc {heading: 'Operations', subheading: 'Signal', namespace: 'signal'}
115+
*/
116+
function stft_(
117+
signal: Tensor1D, frameLength: number, frameStep: number,
118+
fftLength?: number,
119+
windowFn: (length: number) => Tensor1D = hannWindow): Tensor {
120+
if (fftLength == null) {
121+
fftLength = enclosingPowerOfTwo(frameLength);
122+
}
123+
const framedSignal = frame(signal, frameLength, frameStep);
124+
const windowedSignal = mul(framedSignal, windowFn(frameLength));
125+
const output: Tensor[] = [];
126+
for (let i = 0; i < framedSignal.shape[0]; i++) {
127+
output.push(rfft(windowedSignal.slice([i, 0], [1, frameLength]),
128+
fftLength));
129+
}
130+
return concat(output);
131+
}
132+
133+
function enclosingPowerOfTwo(value: number) {
134+
// Return 2**N for integer N such that 2**N >= value.
135+
return Math.floor(Math.pow(2, Math.ceil(Math.log(value) / Math.log(2.0))));
136+
}
137+
97138
function cosineWindow(windowLength: number, a: number, b: number): Tensor1D {
98139
const even = 1 - windowLength % 2;
99140
const newValues = new Float32Array(windowLength);
@@ -107,3 +148,4 @@ function cosineWindow(windowLength: number, a: number, b: number): Tensor1D {
107148
export const hannWindow = op({hannWindow_});
108149
export const hammingWindow = op({hammingWindow_});
109150
export const frame = op({frame_});
151+
export const stft = op({stft_});

‎src/ops/signal_ops_test.ts‎

Lines changed: 163 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -124,3 +124,166 @@ describeWithFlags('frame', ALL_ENVS, () => {
124124
expectArraysClose(await output.data(), [1, 2, 3, 4, 5, 100]);
125125
});
126126
});
127+
128+
describeWithFlags('stft', ALL_ENVS, () => {
129+
it('3 length with hann window', async () => {
130+
const input = tf.tensor1d([1, 1, 1, 1, 1]);
131+
const frameLength = 3;
132+
const frameStep = 1;
133+
const output = tf.signal.stft(input, frameLength, frameStep);
134+
expect(output.shape).toEqual([3, 3]);
135+
expectArraysClose(await output.data(), [
136+
1.0, 0.0, 0.0, -1.0, -1.0, 0.0,
137+
1.0, 0.0, 0.0, -1.0, -1.0, 0.0,
138+
1.0, 0.0, 0.0, -1.0, -1.0, 0.0,
139+
]);
140+
});
141+
142+
it('3 length with hann window (sequencial number)', async () => {
143+
const input = tf.tensor1d([1, 2, 3, 4, 5]);
144+
const frameLength = 3;
145+
const frameStep = 1;
146+
const output = tf.signal.stft(input, frameLength, frameStep);
147+
expect(output.shape).toEqual([3, 3]);
148+
expectArraysClose(await output.data(), [
149+
2.0, 0.0, 0.0, -2.0, -2.0, 0.0,
150+
3.0, 0.0, 0.0, -3.0, -3.0, 0.0,
151+
4.0, 0.0, 0.0, -4.0, -4.0, 0.0
152+
]);
153+
});
154+
155+
it('3 length, 2 step with hann window', async () => {
156+
const input = tf.tensor1d([1, 1, 1, 1, 1]);
157+
const frameLength = 3;
158+
const frameStep = 2;
159+
const output = tf.signal.stft(input, frameLength, frameStep);
160+
expect(output.shape).toEqual([2, 3]);
161+
expectArraysClose(await output.data(), [
162+
1.0, 0.0, 0.0, -1.0, -1.0, 0.0,
163+
1.0, 0.0, 0.0, -1.0, -1.0, 0.0
164+
]);
165+
});
166+
167+
it('3 fftLength, 5 frameLength, 2 step', async () => {
168+
const input = tf.tensor1d([1, 1, 1, 1, 1, 1]);
169+
const frameLength = 5;
170+
const frameStep = 1;
171+
const fftLength = 3;
172+
const output = tf.signal.stft(input, frameLength, frameStep, fftLength);
173+
expect(output.shape[0]).toEqual(2);
174+
expectArraysClose(await output.data(), [
175+
1.5, 0.0, -0.749999, 0.433,
176+
1.5, 0.0, -0.749999, 0.433
177+
]);
178+
});
179+
180+
it('5 length with hann window', async () => {
181+
const input = tf.tensor1d([1, 1, 1, 1, 1]);
182+
const frameLength = 5;
183+
const frameStep = 1;
184+
const output = tf.signal.stft(input, frameLength, frameStep);
185+
expect(output.shape).toEqual([1, 5]);
186+
expectArraysClose(
187+
await output.data(),
188+
[2.0, 0.0, 0.0, -1.7071068, -1.0, 0.0, 0.0, 0.29289323, 0.0, 0.0]);
189+
});
190+
191+
it('5 length with hann window (sequential)', async () => {
192+
const input = tf.tensor1d([1, 2, 3, 4, 5]);
193+
const frameLength = 5;
194+
const frameStep = 1;
195+
const output = tf.signal.stft(input, frameLength, frameStep);
196+
expect(output.shape).toEqual([1, 5]);
197+
expectArraysClose(
198+
await output.data(),
199+
[6.0, 0.0, -0.70710677, -5.1213202, -3.0, 1.0,
200+
0.70710677, 0.87867975, 0.0, 0.0]);
201+
});
202+
203+
it('3 length with hamming window', async () => {
204+
const input = tf.tensor1d([1, 1, 1, 1, 1]);
205+
const frameLength = 3;
206+
const frameStep = 1;
207+
const fftLength = 3;
208+
const output = tf.signal.stft(input, frameLength, frameStep,
209+
fftLength, (length) => tf.signal.hammingWindow(length));
210+
expect(output.shape).toEqual([3, 2]);
211+
expectArraysClose(await output.data(), [
212+
1.16, 0.0, -0.46, -0.79674333,
213+
1.16, 0.0, -0.46, -0.79674333,
214+
1.16, 0.0, -0.46, -0.79674333
215+
]);
216+
});
217+
218+
it('3 length, 2 step with hamming window', async () => {
219+
const input = tf.tensor1d([1, 1, 1, 1, 1]);
220+
const frameLength = 3;
221+
const frameStep = 2;
222+
const fftLength = 3;
223+
const output = tf.signal.stft(input, frameLength, frameStep,
224+
fftLength, (length) => tf.signal.hammingWindow(length));
225+
expect(output.shape).toEqual([2, 2]);
226+
expectArraysClose(await output.data(), [
227+
1.16, 0.0, -0.46, -0.79674333,
228+
1.16, 0.0, -0.46, -0.79674333
229+
]);
230+
});
231+
232+
it('3 fftLength, 5 frameLength, 2 step with hamming window', async () => {
233+
const input = tf.tensor1d([1, 1, 1, 1, 1, 1]);
234+
const frameLength = 5;
235+
const frameStep = 1;
236+
const fftLength = 3;
237+
const output = tf.signal.stft(input, frameLength, frameStep,
238+
fftLength, (length) => tf.signal.hammingWindow(length));
239+
expect(output.shape).toEqual([2, 2]);
240+
expectArraysClose(await output.data(), [
241+
1.619999, 0.0, -0.69, 0.39837,
242+
1.619999, 0.0, -0.69, 0.39837
243+
]);
244+
});
245+
246+
it('5 length with hann window (sequential)', async () => {
247+
const input = tf.tensor1d([1, 2, 3, 4, 5]);
248+
const frameLength = 5;
249+
const frameStep = 1;
250+
const fftLength = 5;
251+
const output = tf.signal.stft(input, frameLength, frameStep,
252+
fftLength, (length) => tf.signal.hammingWindow(length));
253+
expect(output.shape).toEqual([1, 3]);
254+
expectArraysClose(
255+
await output.data(),
256+
[6.72, 0.0, -3.6371822, -1.1404576, 0.4771822, 0.39919350]);
257+
});
258+
259+
it('3 length without window function', async () => {
260+
const input = tf.tensor1d([1, 1, 1, 1, 1]);
261+
const frameLength = 3;
262+
const frameStep = 1;
263+
const fftLength = 3;
264+
const ident = (length: number) => tf.ones([length]).as1D();
265+
const output = tf.signal.stft(input, frameLength, frameStep,
266+
fftLength, ident);
267+
expect(output.shape).toEqual([3, 2]);
268+
expectArraysClose(await output.data(), [
269+
3.0, 0.0, 0.0, 0.0,
270+
3.0, 0.0, 0.0, 0.0,
271+
3.0, 0.0, 0.0, 0.0
272+
]);
273+
});
274+
275+
it('3 length, 2 step without window function', async () => {
276+
const input = tf.tensor1d([1, 1, 1, 1, 1]);
277+
const frameLength = 3;
278+
const frameStep = 2;
279+
const fftLength = 3;
280+
const ident = (length: number) => tf.ones([length]).as1D();
281+
const output = tf.signal.stft(input, frameLength, frameStep,
282+
fftLength, ident);
283+
expect(output.shape).toEqual([2, 2]);
284+
expectArraysClose(await output.data(), [
285+
3.0, 0.0, 0.0, 0.0,
286+
3.0, 0.0, 0.0, 0.0
287+
]);
288+
});
289+
});

0 commit comments

Comments
(0)

AltStyle によって変換されたページ (->オリジナル) /