|
| 1 | +import numpy as np |
| 2 | + |
| 3 | +import matplotlib.pyplot as plt |
| 4 | + |
| 5 | +from sklearn.datasets import make_blobs, make_circles, make_moons |
| 6 | +from sklearn.preprocessing import StandardScaler |
| 7 | + |
| 8 | +from scipy.misc import imresize |
| 9 | + |
| 10 | +# Set tolerances |
| 11 | +tol = 0.01 # error tolerance |
| 12 | +eps = 0.01 # alpha tolerance |
| 13 | + |
| 14 | +class SMOModel: |
| 15 | + """Container object for the model used for sequential minimal optimization.""" |
| 16 | + |
| 17 | + def __init__(self, X, y, C, kernel, alphas, b, errors): |
| 18 | + self.X = X # training data vector |
| 19 | + self.y = y # class label vector |
| 20 | + self.C = C # regularization parameter |
| 21 | + self.kernel = kernel # kernel function |
| 22 | + self.alphas = alphas # lagrange multiplier vector |
| 23 | + self.b = b # scalar bias term |
| 24 | + self.errors = errors # error cache |
| 25 | + self._obj = [] # record of objective function value |
| 26 | + self.m = len(self.X) # store size of training set |
| 27 | + |
| 28 | + |
| 29 | +def linear(x, y, b=1): |
| 30 | + """ |
| 31 | + Computes the linear kernel between x and y |
| 32 | + |
| 33 | + Args: |
| 34 | + b: Bias (a scalar) |
| 35 | + x: array |
| 36 | + y: array |
| 37 | + |
| 38 | + Returns: |
| 39 | + Linear kernel between x and y |
| 40 | + """ |
| 41 | + |
| 42 | + result = None |
| 43 | + |
| 44 | + ####################################################################### |
| 45 | + # TODO: # |
| 46 | + # Compute the linear kernel between x and y # |
| 47 | + ####################################################################### |
| 48 | + result = np.dot(x, y.T)+b |
| 49 | + pass |
| 50 | + |
| 51 | + ####################################################################### |
| 52 | + # END OF YOUR CODE # |
| 53 | + ####################################################################### |
| 54 | + |
| 55 | + return result |
| 56 | + |
| 57 | + |
| 58 | +def gaussian(x, y, sigma=1): |
| 59 | + """ |
| 60 | + Computes the gaussian kernel between x and y |
| 61 | + |
| 62 | + Args: |
| 63 | + x: array |
| 64 | + y: array |
| 65 | + sigma: scalar |
| 66 | + |
| 67 | + Returns: |
| 68 | + Gaussian similarity |
| 69 | + """ |
| 70 | + |
| 71 | + result = None |
| 72 | + |
| 73 | + ####################################################################### |
| 74 | + # TODO: # |
| 75 | + # Compute the Gaussian kernel between x and y # |
| 76 | + ####################################################################### |
| 77 | + #result = np.exp(-(np.absolute(x-y)**2)/2*(sigma**2)) |
| 78 | + if np.ndim(x) == 1 and np.ndim(y) == 1: |
| 79 | + result = np.exp(- np.linalg.norm(x - y) / (2 * sigma ** 2)) |
| 80 | + elif (np.ndim(x) > 1 and np.ndim(y) == 1) or (np.ndim(x) == 1 and np.ndim(y) > 1): |
| 81 | + result = np.exp(- np.linalg.norm(x - y, axis=1) / (2 * sigma ** 2)) |
| 82 | + elif np.ndim(x) > 1 and np.ndim(y) > 1: |
| 83 | + result = np.exp(- np.linalg.norm(x[:, np.newaxis] - y[np.newaxis, :], axis=2) / (2 * sigma ** 2)) |
| 84 | + pass |
| 85 | + |
| 86 | + ####################################################################### |
| 87 | + # END OF YOUR CODE # |
| 88 | + ####################################################################### |
| 89 | + |
| 90 | + return result |
| 91 | + |
| 92 | + |
| 93 | +def objective_function(alphas, y,kernel, X): |
| 94 | + """ |
| 95 | + Computes the objective function |
| 96 | + |
| 97 | + Args: |
| 98 | + alphas: Lagrangian multipliers |
| 99 | + y: class labels -1 or 1 |
| 100 | + X: training data |
| 101 | + |
| 102 | + Returns: |
| 103 | + Value of the objective function |
| 104 | + """ |
| 105 | + |
| 106 | + result = None |
| 107 | + |
| 108 | + ####################################################################### |
| 109 | + # TODO: # |
| 110 | + # Compute the objective function # |
| 111 | + ####################################################################### |
| 112 | + result = np.sum(alphas) - 0.5 * np.sum(y * y * kernel(X, X) * alphas * alphas) #correct |
| 113 | + pass |
| 114 | + |
| 115 | + ####################################################################### |
| 116 | + # END OF YOUR CODE # |
| 117 | + ####################################################################### |
| 118 | + |
| 119 | + return result |
| 120 | + |
| 121 | + |
| 122 | +# Decision function |
| 123 | + |
| 124 | +def decision_function(alphas, target, kernel, X_train, x_test, b): |
| 125 | + """ |
| 126 | + Compute the decision function |
| 127 | + |
| 128 | + Args: |
| 129 | + alphas: Lagrangian multipliers |
| 130 | + y: class labels -1 or 1 |
| 131 | + X: training/test data |
| 132 | + |
| 133 | + Returns: |
| 134 | + Output of decision function |
| 135 | + """ |
| 136 | + |
| 137 | + result = None |
| 138 | + |
| 139 | + ####################################################################### |
| 140 | + # TODO: # |
| 141 | + # Compute the decision function # |
| 142 | + ####################################################################### |
| 143 | + #result = (alphas * target) @ kernel(X_train, x_test) - b #correct |
| 144 | + result = np.dot((alphas * target), kernel(X_train, x_test)) - b |
| 145 | + pass |
| 146 | + |
| 147 | + ####################################################################### |
| 148 | + # END OF YOUR CODE # |
| 149 | + ####################################################################### |
| 150 | + |
| 151 | + return result |
| 152 | + |
| 153 | + |
| 154 | + |
| 155 | +def plot_decision_boundary(model, ax, resolution=100, colors=('b', 'k', 'r')): |
| 156 | + """Plots the model's decision boundary on the input axes object. |
| 157 | + Range of decision boundary grid is determined by the training data. |
| 158 | + Returns decision boundary grid and axes object (`grid`, `ax`).""" |
| 159 | + |
| 160 | + # Generate coordinate grid of shape [resolution x resolution] |
| 161 | + # and evaluate the model over the entire space |
| 162 | + xrange = np.linspace(model.X[:,0].min(), model.X[:,0].max(), resolution) |
| 163 | + yrange = np.linspace(model.X[:,1].min(), model.X[:,1].max(), resolution) |
| 164 | + grid = [[decision_function(model.alphas, model.y, |
| 165 | + model.kernel, model.X, |
| 166 | + np.array([xr, yr]), model.b) for yr in yrange] for xr in xrange] |
| 167 | + grid = np.array(grid).reshape(len(xrange), len(yrange)) |
| 168 | + |
| 169 | + # Plot decision contours using grid and |
| 170 | + # make a scatter plot of training data |
| 171 | + ax.contour(xrange, yrange, grid, (-1, 0, 1), linewidths=(1, 1, 1), |
| 172 | + linestyles=('--', '-', '--'), colors=colors) |
| 173 | + ax.scatter(model.X[:,0], model.X[:,1], |
| 174 | + c=model.y, cmap=plt.cm.viridis, lw=0, alpha=0.5) |
| 175 | + |
| 176 | + # Plot support vectors (non-zero alphas) |
| 177 | + # as circled points (linewidth > 0) |
| 178 | + mask = model.alphas != 0.0 |
| 179 | + ax.scatter(model.X[:,0][mask], model.X[:,1][mask], |
| 180 | + c=model.y[mask], cmap=plt.cm.viridis) |
| 181 | + |
| 182 | + return grid, ax |
| 183 | + |
| 184 | +def take_step(i1, i2, model): |
| 185 | + |
| 186 | + # Skip if chosen alphas are the same |
| 187 | + if i1 == i2: |
| 188 | + return 0, model |
| 189 | + |
| 190 | + alph1 = model.alphas[i1] |
| 191 | + alph2 = model.alphas[i2] |
| 192 | + y1 = model.y[i1] |
| 193 | + y2 = model.y[i2] |
| 194 | + E1 = model.errors[i1] |
| 195 | + E2 = model.errors[i2] |
| 196 | + s = y1 * y2 |
| 197 | + |
| 198 | + # Compute L & H, the bounds on new possible alpha values |
| 199 | + if (y1 != y2): |
| 200 | + L = max(0, alph2 - alph1) |
| 201 | + H = min(model.C, model.C + alph2 - alph1) |
| 202 | + elif (y1 == y2): |
| 203 | + L = max(0, alph1 + alph2 - model.C) |
| 204 | + H = min(model.C, alph1 + alph2) |
| 205 | + if (L == H): |
| 206 | + return 0, model |
| 207 | + |
| 208 | + # Compute kernel & 2nd derivative eta |
| 209 | + k11 = model.kernel(model.X[i1], model.X[i1]) |
| 210 | + k12 = model.kernel(model.X[i1], model.X[i2]) |
| 211 | + k22 = model.kernel(model.X[i2], model.X[i2]) |
| 212 | + eta = 2 * k12 - k11 - k22 |
| 213 | + |
| 214 | + # Compute new alpha 2 (a2) if eta is negative |
| 215 | + if (eta < 0): |
| 216 | + a2 = alph2 - y2 * (E1 - E2) / eta |
| 217 | + # Clip a2 based on bounds L & H |
| 218 | + |
| 219 | + ####################################################################### |
| 220 | + # TODO: # |
| 221 | + # Clip a2 based on the last equation in the notes # |
| 222 | + ####################################################################### |
| 223 | + if L < a2 < H: |
| 224 | + a2 = a2 |
| 225 | + elif (a2 <= L): |
| 226 | + a2 = L |
| 227 | + elif (a2 >= H): |
| 228 | + a2 = H |
| 229 | + pass |
| 230 | + |
| 231 | + ####################################################################### |
| 232 | + # END OF YOUR CODE # |
| 233 | + ####################################################################### |
| 234 | + |
| 235 | + # If eta is non-negative, move new a2 to bound with greater objective function value |
| 236 | + else: |
| 237 | + alphas_adj = model.alphas.copy() |
| 238 | + alphas_adj[i2] = L |
| 239 | + # objective function output with a2 = L |
| 240 | + Lobj = objective_function(alphas_adj, model.y, model.kernel, model.X) |
| 241 | + alphas_adj[i2] = H |
| 242 | + # objective function output with a2 = H |
| 243 | + Hobj = objective_function(alphas_adj, model.y, model.kernel, model.X) |
| 244 | + if Lobj > (Hobj + eps): |
| 245 | + a2 = L |
| 246 | + elif Lobj < (Hobj - eps): |
| 247 | + a2 = H |
| 248 | + else: |
| 249 | + a2 = alph2 |
| 250 | + |
| 251 | + # Push a2 to 0 or C if very close |
| 252 | + if a2 < 1e-8: |
| 253 | + a2 = 0.0 |
| 254 | + elif a2 > (model.C - 1e-8): |
| 255 | + a2 = model.C |
| 256 | + |
| 257 | + # If examples can't be optimized within epsilon (eps), skip this pair |
| 258 | + if (np.abs(a2 - alph2) < eps * (a2 + alph2 + eps)): |
| 259 | + return 0, model |
| 260 | + |
| 261 | + # Calculate new alpha 1 (a1) |
| 262 | + a1 = alph1 + s * (alph2 - a2) |
| 263 | + |
| 264 | + # Update threshold b to reflect newly calculated alphas |
| 265 | + # Calculate both possible thresholds |
| 266 | + b1 = E1 + y1 * (a1 - alph1) * k11 + y2 * (a2 - alph2) * k12 + model.b |
| 267 | + b2 = E2 + y1 * (a1 - alph1) * k12 + y2 * (a2 - alph2) * k22 + model.b |
| 268 | + |
| 269 | + # Set new threshold based on if a1 or a2 is bound by L and/or H |
| 270 | + if 0 < a1 and a1 < model.C: |
| 271 | + b_new = b1 |
| 272 | + elif 0 < a2 and a2 < model.C: |
| 273 | + b_new = b2 |
| 274 | + # Average thresholds if both are bound |
| 275 | + else: |
| 276 | + b_new = (b1 + b2) * 0.5 |
| 277 | + |
| 278 | + # Update model object with new alphas & threshold |
| 279 | + model.alphas[i1] = a1 |
| 280 | + model.alphas[i2] = a2 |
| 281 | + |
| 282 | + # Update error cache |
| 283 | + # Error cache for optimized alphas is set to 0 if they're unbound |
| 284 | + for index, alph in zip([i1, i2], [a1, a2]): |
| 285 | + if 0.0 < alph < model.C: |
| 286 | + model.errors[index] = 0.0 |
| 287 | + |
| 288 | + # Set non-optimized errors based on equation 12.11 in Platt's book |
| 289 | + non_opt = [n for n in range(model.m) if (n != i1 and n != i2)] |
| 290 | + model.errors[non_opt] = model.errors[non_opt] + \ |
| 291 | + y1*(a1 - alph1)*model.kernel(model.X[i1], model.X[non_opt]) + \ |
| 292 | + y2*(a2 - alph2)*model.kernel(model.X[i2], model.X[non_opt]) + model.b - b_new |
| 293 | + |
| 294 | + # Update model threshold |
| 295 | + model.b = b_new |
| 296 | + |
| 297 | + return 1, model |
| 298 | + |
| 299 | +def examine_example(i2, model): |
| 300 | + |
| 301 | + y2 = model.y[i2] |
| 302 | + alph2 = model.alphas[i2] |
| 303 | + E2 = model.errors[i2] |
| 304 | + r2 = E2 * y2 |
| 305 | + |
| 306 | + # Proceed if error is within specified tolerance (tol) |
| 307 | + if ((r2 < -tol and alph2 < model.C) or (r2 > tol and alph2 > 0)): |
| 308 | + |
| 309 | + if len(model.alphas[(model.alphas != 0) & (model.alphas != model.C)]) > 1: |
| 310 | + # Use 2nd choice heuristic is choose max difference in error |
| 311 | + if model.errors[i2] > 0: |
| 312 | + i1 = np.argmin(model.errors) |
| 313 | + elif model.errors[i2] <= 0: |
| 314 | + i1 = np.argmax(model.errors) |
| 315 | + step_result, model = take_step(i1, i2, model) |
| 316 | + if step_result: |
| 317 | + return 1, model |
| 318 | + |
| 319 | + # Loop through non-zero and non-C alphas, starting at a random point |
| 320 | + for i1 in np.roll(np.where((model.alphas != 0) & (model.alphas != model.C))[0], |
| 321 | + np.random.choice(np.arange(model.m))): |
| 322 | + step_result, model = take_step(i1, i2, model) |
| 323 | + if step_result: |
| 324 | + return 1, model |
| 325 | + |
| 326 | + # loop through all alphas, starting at a random point |
| 327 | + for i1 in np.roll(np.arange(model.m), np.random.choice(np.arange(model.m))): |
| 328 | + step_result, model = take_step(i1, i2, model) |
| 329 | + if step_result: |
| 330 | + return 1, model |
| 331 | + |
| 332 | + return 0, model |
| 333 | + |
| 334 | +def train(model): |
| 335 | + |
| 336 | + numChanged = 0 |
| 337 | + examineAll = 1 |
| 338 | + |
| 339 | + while(numChanged > 0) or (examineAll): |
| 340 | + numChanged = 0 |
| 341 | + if examineAll: |
| 342 | + # loop over all training examples |
| 343 | + for i in range(model.alphas.shape[0]): |
| 344 | + examine_result, model = examine_example(i, model) |
| 345 | + numChanged += examine_result |
| 346 | + if examine_result: |
| 347 | + obj_result = objective_function(model.alphas, model.y, model.kernel, model.X) |
| 348 | + model._obj.append(obj_result) |
| 349 | + else: |
| 350 | + # loop over examples where alphas are not already at their limits |
| 351 | + for i in np.where((model.alphas != 0) & (model.alphas != model.C))[0]: |
| 352 | + examine_result, model = examine_example(i, model) |
| 353 | + numChanged += examine_result |
| 354 | + if examine_result: |
| 355 | + obj_result = objective_function(model.alphas, model.y, model.kernel, model.X) |
| 356 | + model._obj.append(obj_result) |
| 357 | + if examineAll == 1: |
| 358 | + examineAll = 0 |
| 359 | + elif numChanged == 0: |
| 360 | + examineAll = 1 |
| 361 | + |
| 362 | + return model |
| 363 | + |
| 364 | + |
| 365 | + |
0 commit comments