|
| 1 | +sorted_array = list() |
| 2 | +def max_heapify(arr, i, heap_size): |
| 3 | + left = 2*i-1 |
| 4 | + right = 2*i+1-1 |
| 5 | + max_ = i-1 |
| 6 | + if (left<heap_size and arr[i-1]<arr[left]): |
| 7 | + max_ = left |
| 8 | + else: |
| 9 | + max_ = i-1 |
| 10 | + if (right<heap_size and arr[max_]<arr[right]): |
| 11 | + max_ = right |
| 12 | + if (max_ != i-1): |
| 13 | + arr[max_], arr[i-1] = arr[i-1], arr[max_] |
| 14 | + res = max_heapify(arr, max_+1, heap_size) |
| 15 | + # print("res", res) : will return the below line whenever |
| 16 | + # a recursive call is completed. |
| 17 | + return ("max_heapify arr:{}".format(arr)) |
| 18 | + |
| 19 | + |
| 20 | +def build_max_heap(arr): |
| 21 | + heap_size = len(arr) |
| 22 | + for i in range(len(arr)//2, 0, -1): |
| 23 | + array = max_heapify(arr, i, heap_size) |
| 24 | + print("build_max_heap", arr) |
| 25 | + return arr |
| 26 | + |
| 27 | + |
| 28 | +def extract_heap(arr): |
| 29 | + if len(arr)<1: |
| 30 | + return "No Elements" |
| 31 | + max_ = arr[0] |
| 32 | + sorted_array.append(max_) |
| 33 | + arr[0] = arr[len(arr)-1] |
| 34 | + del arr[len(arr)-1] |
| 35 | + max_heapify(arr, 1, len(arr)) |
| 36 | + return (arr, max_) |
| 37 | + |
| 38 | +def heap_sort(arr): |
| 39 | + array = build_max_heap(arr) |
| 40 | + for i in range(len(array)): |
| 41 | + print("heap_sort", extract_heap(array)) |
| 42 | + print(sorted_array) |
| 43 | + |
| 44 | + |
| 45 | + |
0 commit comments