A professional, comprehensive and high-performance library for you to manipulate matrices.
- 6 Categories: Decompositions, Linear Equations, Operations, Properties, Structure and Utilities
- Professional
- Comprehensive
- High-performance
- Matrix properties are cached
- Easy to use
- 3000+ Test cases
npm install --save @rayyamhk/matrix
const Matrix = require('@rayyamhk/matrix'); const A = new Matrix([ [1, 2], [3, 4], ]); const B = new Matrix([ [2, 3], [4, 5], ]); const Sum = Matrix.add(A, B); const [Q, R] = Matrix.QR(Sum); const det = Sum.det(); const eigenvalues = Sum.eigenvalues();
npm install
npm run build
It creates a production version in /lib
npm install
npm run test
It runs all tests in /src/tests
You can find the documentation in the following link:
https://rayyamhk.github.io/Matrix.js/Matrix.html
new Matrix([]); // 0x0 matrix new Matrix([ [1, 2, 3, 4], ]); // 1x4 matrix new Matrix([ [1], [2], [3], ]); // 3x1 matrix new Matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 9], ]); // 3x3 matrix
const A = new Matrix([ [4, 3], [6, 3], ]); const [P, L, U] = Matrix.LU(A, false); // P is [[0, 1], [1, 0]], L is [[1, 0], [2/3, 1]], U is [[6, 3], [0, 1]] and A = PLU. const [P, LU] = Matrix.LU(A, true); // P is [ 1, 0 ], LU = [[6, 3], [2/3, 1]] // Note: P is an permutation array, L and U can be extracted from LU.
const A = new Matrix([ [12, -51, 4], [6, 167, -68], [-4, 24, -41], ]); const [Q, R] = Matrix.QR(A); // Q is [[-0.8571, 0.3943, 0.3314], [-0.4286, -0.9029, -0.0343], [0.2857, -0.1714, 0.9429]], // R is [[-14, -21, 14], [0, -175, 70], [0, 0, -35]], // and A = QR
const A = new Matrix([ [1, 2], [0, 3], ]); const y = new Matrix([ [1], [3], ]); try { const x = Matrix.backward(A, y); // [[-1], [1]] } catch (e) { console.log(e.message); }
const A = new Matrix([ [1, 0], [2, 3], ]); const y = new Matrix([ [1], [8], ]); try { const x = Matrix.forward(A, y); // [[1], [2]] } catch (e) { console.log(e.message); }
const A = new Matrix([ [1, 2], [3, 4], ]); const y = new Matrix([ [5], [11], ]); try { const x = Matrix.solve(A, y); // [[1], [2]] } catch (e) { console.log(e.message); }
const A = new Matrix([ [1, 2], [3, 4], ]); const B = new Matrix([ [5, 6], [7, 8], ]); const Sum = Matrix.add(A, B); // [[6, 8], [10, 12]]
const A = new Matrix([ [1, 2], [3, 4], ]); try { const inv = Matrix.inverse(A); // [[-2, 1], [1.5, -0.5]] } catch (e) { console.log(e.message); }
const A = new Matrix([ [1, 2, 3], [4, 5, 6], ]); const B = new Matrix([ [-1, -2], [3, 4], [-5, -6], ]); const Product = Matrix.multiply(A, B); // [[-10, -12], [-19, -24]]
const A = new Matrix([ [2, 0], [0, 2], ]); const Result = Matrix.pow(A, 10); // [[1024, 0], [0, 1024]]
const A = new Matrix([ [1, 2], [3, 4], ]); const B = new Matrix([ [4, 3], [2, 1], ]); const Diff = Matrix.subtract(A, B); // [[-3, -1], [1, 3]]
const A = new Matrix([ [1, 2, 3], [4, 5, 6], ]); const T = Matrix.transpose(A); // [[1, 4], [2, 5], [3, 6]]
const A = new Matrix([ [1, 2, 3], [4, 5, 6], [1, 2, 7], ]); A.cond(1); // 64 A.cond(2); // 32.844126527227147 A.cond(Infinity); // 42.4999, A.cond('F'); // 34.117851306578174
const A = new Matrix([ [1, 3, 5, 9], [1, 3, 1, 7], [4, 3, 9, 7], [5, 2, 0, 9], ]); A.det(); // -376
Note that eigenvalues are instance of Complex. For more details, please check the documentation here
const A = new Matrix([ [13, -12, 6, -9], [1, -11, -13, 0], [-6, -2, 15, -6], [14, -8, 1, 11], ]); const eigenvalues = A.eigenvalues(); eigenvalues.forEach((eigenvalue) => { console.log(eigenvalue.toString()); // Instance method of Complex }); // Result: '10.7046681565572', '-12.9152701010176', '15.1053009722302 + 14.3131819845827i', '15.1053009722302 - 14.3131819845827i'
const A = new Matrix([ [1, 7, -5, 2, -7], [-8, 0, 2, 9, 4], [3, 4, 9, 6, 5], ]); A.norm(1); // 17 A.norm(2); // 15.849881886952135 A.norm(Infinity); // 27 A.norm('F'); // 21.447610589527216
const A = new Matrix([ [0, 1, 2], [1, 2, 1], [2, 7, 8], ]); A.nullity(); // 1
const A = new Matrix([ [0, 1, 2], [1, 2, 1], [2, 7, 8], ]); A.rank(); // 2
const A = new Matrix([ [0, 1, 2, 3], [4, 5, 6, 7], ]); const [row, col] = A.size(); // 2, 4
const A = new Matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 9], ]); A.trace(); // 15
const A = new Matrix([ [1, 0, 0], [0, 5, 0], [0, 0, -3], ]); const B = new Matrix([ [1, 0, 0.1], [0, 5, 0], [0, 0, -3], ]); A.isDiagonal(); // true B.isDiagonal(); // false
const A = new Matrix([ [6, 0, 0, 0], [1, -5, 0, 0], [2, 30, 1, 0], ]); A.isLowerTriangular(); // true
const Reflection = new Matrix([ [1, 0], [0, -1], ]); Reflection.isOrthongonal(); // true
const A = new Matrix([ [1, 2, 3, 4], [-2, 2, -4, 5], [-3, 4, 100, 10], [-4, -5, -10, 5], ]); A.isSkewSymmetric(); // true
const A = new Matrix([ [1, 2], [3, 4], ]); A.isSquare(); // true
const A = new Matrix([ [1, 4, 3], [4, 5, 4], [3, 4, 5], ]); A.isSymmetric(); // true
const A = new Matrix([ [6, 0, 1, 5], [0, -5, 4, 7], [0, 0, 1, 2], ]); A.isUpperTriangular(); // true
const A = new Matrix([ [1, 2], [3, 4], ]); Matrix.clone(A); // [[1, 2], [3, 4]]
const A = new Matrix([ [1, 2], [3, 4], [5, 6], ]); Matrix.column(A, 0); // [[1], [3], [5]] Matrix.column(A, 1); // [[2], [4], [6]]
Matrix.diag([1, 2, 3]); // [[1, 0, 0], [0, 2, 0], [0, 0, 3]] const values = [ new Matrix([ [1, 2], [3, 4], ]), new Matrix([ [5, 6], [7, 8], ]) ]; Matrix.diag(values); // [[1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 5, 6], [0, 0, 7, 8]]
Matrix.elementwise(A, (entry) => entry * 2); // element-wise multiplication Matrix.elementwise(A, (entry) => entry ** 2); // element-wise power Matrix.elementwise(A, (entry) => entry - 10); // element-wise subtraction
const A = new Matrix([ [1, 2], [3, 4], ]); A.entry(0, 0); // 1 A.entry(0, 1); // 2 A.entry(1, 0); // 3 A.entry(1, 1); // 4
const matrix = new Matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 9], ]); const myArray = matrix.flatten(); // [1, 2, 3, 4, 5, 6, 7, 8, 9]
const myArray = [1, 2, 3, 4, 5, 6, 7, 8]; const matrix = Matrix.fromArray(myArray, 2, 4); // [[1, 2, 3, 4], [5, 6, 7, 8]]
Matrix.generate(3, 3, () => 0); // 3 x 3 zero matrix Matrix.generate(3, 3, (i, j) => 1 / (i + j + 1)); // 3 x 3 Hilbert matrix Matrix.generate(3, 3, (i, j) => i >= j ? 1 : 0); // 3 x 3 lower triangular matrix
const A = new Matrix([ [1, 2, 3, 4], [5, 6, 7, 8], ]); Matrix.getDiag(A); // [1, 6]
Matrix.getRandomMatrix(3, 4, -10, 10, 2); // 3 x 4 matrix which entries are bounded by -10 and 10 and has 2 decimal places
Matrix.identity(2); // 2 x 2 identity matrix Matrix.identity(10); // 10 x 10 identity matrix
const A = new Matrix([ [1, 2], [3, 4], ]); const B = new Matrix([ [1, 2], [3, 4 + 10e-10], ]); Matrix.isEqual(A, B); // true const C = new Matrix([ [1, 2], [3, 4 + 10e-2], ]); Matrix.isEqual(A, C); // false
const A = new Matrix([ [1, 2, 3], [4, 5, 6], ]); Matrix.row(A, 0); // [[1, 2, 3]] Matrix.row(A, 1); // [[4, 5, 6]]
const A = new Matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 9], ]); Matrix.submatrix(A, 0, 1); // [[2]], row 0 & column 1 Matrix.submatrix(A, '0:1', 1); // [[1], [4]], row 0 + row 1 & column 1 Matrix.submatrix(A, '0:1', '0:1'); // [[1, 2], [4, 5]], row 0 + row 1 & column 0 + column 1 Matrix.submatrix(A, ':', '1:2'); // [[2, 3], [5, 6], [8,9]], all rows && column 1 + column 2 Matrix.submatrix(A, ':', ':'); // same with A
const A = new Matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 9], ]); A.toString(); // '1 2 3\n4 5 6\n7 8 9' // 1 2 3 // 4 5 6 // 7 8 9
Matrix.zero(3, 4); // 3 x 4 zero matrix Matrix.zero(10, 1); // 10 x 1 zero matrix
You are welcome to contribute by:
- Reporting bugs
- Fixing bugs
- Adding new features
- Improving performance
- Improving code style of this library
MIT