Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A professional, comprehensive and high-performance library for you to manipulate matrices.

License

Notifications You must be signed in to change notification settings

rayyamhk/Matrix.js

Repository files navigation

Matrix.js

A professional, comprehensive and high-performance library for you to manipulate matrices.

Features

Install

npm install --save @rayyamhk/matrix

How to use

const Matrix = require('@rayyamhk/matrix');
const A = new Matrix([
 [1, 2],
 [3, 4],
]);
const B = new Matrix([
 [2, 3],
 [4, 5],
]);
const Sum = Matrix.add(A, B);
const [Q, R] = Matrix.QR(Sum);
const det = Sum.det();
const eigenvalues = Sum.eigenvalues();

Build

npm install
npm run build

It creates a production version in /lib

Test

npm install
npm run test

It runs all tests in /src/tests

API

You can find the documentation in the following link:

https://rayyamhk.github.io/Matrix.js/Matrix.html

Examples

constructor(A)

new Matrix([]); // 0x0 matrix
new Matrix([
 [1, 2, 3, 4],
]); // 1x4 matrix
new Matrix([
 [1],
 [2],
 [3],
]); // 3x1 matrix
new Matrix([
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9],
]); // 3x3 matrix

Decompositions

LU(A, optimized)

const A = new Matrix([
 [4, 3],
 [6, 3],
]);
const [P, L, U] = Matrix.LU(A, false);
// P is [[0, 1], [1, 0]], L is [[1, 0], [2/3, 1]], U is [[6, 3], [0, 1]] and A = PLU.
const [P, LU] = Matrix.LU(A, true);
// P is [ 1, 0 ], LU = [[6, 3], [2/3, 1]]
// Note: P is an permutation array, L and U can be extracted from LU.

QR(A)

const A = new Matrix([
 [12, -51, 4],
 [6, 167, -68],
 [-4, 24, -41],
]);
const [Q, R] = Matrix.QR(A);
// Q is [[-0.8571, 0.3943, 0.3314], [-0.4286, -0.9029, -0.0343], [0.2857, -0.1714, 0.9429]],
// R is [[-14, -21, 14], [0, -175, 70], [0, 0, -35]],
// and A = QR

Linear-Equations

backward(U, y)

const A = new Matrix([
 [1, 2],
 [0, 3],
]);
const y = new Matrix([
 [1],
 [3],
]);
try {
 const x = Matrix.backward(A, y); // [[-1], [1]]
} catch (e) {
 console.log(e.message);
}

forward(L, y)

const A = new Matrix([
 [1, 0],
 [2, 3],
]);
const y = new Matrix([
 [1],
 [8],
]);
try {
 const x = Matrix.forward(A, y); // [[1], [2]]
} catch (e) {
 console.log(e.message);
}

solve(A, y)

const A = new Matrix([
 [1, 2],
 [3, 4],
]);
const y = new Matrix([
 [5],
 [11],
]);
try {
 const x = Matrix.solve(A, y); // [[1], [2]]
} catch (e) {
 console.log(e.message);
}

Operations

add(A, B)

const A = new Matrix([
 [1, 2],
 [3, 4],
]);
const B = new Matrix([
 [5, 6],
 [7, 8],
]);
const Sum = Matrix.add(A, B); // [[6, 8], [10, 12]]

inverse(A)

const A = new Matrix([
 [1, 2],
 [3, 4],
]);
try {
 const inv = Matrix.inverse(A); // [[-2, 1], [1.5, -0.5]]
} catch (e) {
 console.log(e.message);
}

multiply(A, B)

const A = new Matrix([
 [1, 2, 3],
 [4, 5, 6],
]);
const B = new Matrix([
 [-1, -2],
 [3, 4],
 [-5, -6],
]);
const Product = Matrix.multiply(A, B); // [[-10, -12], [-19, -24]]

pow(A, n)

const A = new Matrix([
 [2, 0],
 [0, 2],
]);
const Result = Matrix.pow(A, 10); // [[1024, 0], [0, 1024]]

subtract(A, B)

const A = new Matrix([
 [1, 2],
 [3, 4],
]);
const B = new Matrix([
 [4, 3],
 [2, 1],
]);
const Diff = Matrix.subtract(A, B); // [[-3, -1], [1, 3]]

transpose(A)

const A = new Matrix([
 [1, 2, 3],
 [4, 5, 6],
]);
const T = Matrix.transpose(A); // [[1, 4], [2, 5], [3, 6]]

Properties

cond(p = 2)

const A = new Matrix([
 [1, 2, 3],
 [4, 5, 6],
 [1, 2, 7],
]);
A.cond(1); // 64
A.cond(2); // 32.844126527227147
A.cond(Infinity); // 42.4999,
A.cond('F'); // 34.117851306578174

det()

const A = new Matrix([
 [1, 3, 5, 9],
 [1, 3, 1, 7],
 [4, 3, 9, 7],
 [5, 2, 0, 9],
]);
A.det(); // -376

eigenvalues()

Note that eigenvalues are instance of Complex. For more details, please check the documentation here

const A = new Matrix([
 [13, -12, 6, -9],
 [1, -11, -13, 0],
 [-6, -2, 15, -6],
 [14, -8, 1, 11],
]);
const eigenvalues = A.eigenvalues();
eigenvalues.forEach((eigenvalue) => {
 console.log(eigenvalue.toString()); // Instance method of Complex
});
// Result: '10.7046681565572', '-12.9152701010176', '15.1053009722302 + 14.3131819845827i', '15.1053009722302 - 14.3131819845827i'

norm(p)

const A = new Matrix([
 [1, 7, -5, 2, -7],
 [-8, 0, 2, 9, 4],
 [3, 4, 9, 6, 5],
]);
A.norm(1); // 17
A.norm(2); // 15.849881886952135
A.norm(Infinity); // 27
A.norm('F'); // 21.447610589527216

nullity()

const A = new Matrix([
 [0, 1, 2],
 [1, 2, 1],
 [2, 7, 8],
]);
A.nullity(); // 1

rank()

const A = new Matrix([
 [0, 1, 2],
 [1, 2, 1],
 [2, 7, 8],
]);
A.rank(); // 2

size()

const A = new Matrix([
 [0, 1, 2, 3],
 [4, 5, 6, 7],
]);
const [row, col] = A.size(); // 2, 4

trace()

const A = new Matrix([
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9],
]);
A.trace(); // 15

Structure

isDiagonal(digit = 8)

const A = new Matrix([
 [1, 0, 0],
 [0, 5, 0],
 [0, 0, -3],
]);
const B = new Matrix([
 [1, 0, 0.1],
 [0, 5, 0],
 [0, 0, -3],
]);
A.isDiagonal(); // true
B.isDiagonal(); // false

isLowerTriangular(digit = 8)

const A = new Matrix([
 [6, 0, 0, 0],
 [1, -5, 0, 0],
 [2, 30, 1, 0],
]);
A.isLowerTriangular(); // true

isOrthogonal(digit = 8)

const Reflection = new Matrix([
 [1, 0],
 [0, -1],
]);
Reflection.isOrthongonal(); // true

isSkewSymmetric(digit = 8)

const A = new Matrix([
 [1, 2, 3, 4],
 [-2, 2, -4, 5],
 [-3, 4, 100, 10],
 [-4, -5, -10, 5],
]);
A.isSkewSymmetric(); // true

isSquare()

const A = new Matrix([
 [1, 2],
 [3, 4],
]);
A.isSquare(); // true

isSymmetric(digit = 8)

const A = new Matrix([
 [1, 4, 3],
 [4, 5, 4],
 [3, 4, 5],
]);
A.isSymmetric(); // true

isUpperTriangular(digit = 8)

const A = new Matrix([
 [6, 0, 1, 5],
 [0, -5, 4, 7],
 [0, 0, 1, 2],
]);
A.isUpperTriangular(); // true

Utilities

clone(A)

const A = new Matrix([
 [1, 2],
 [3, 4],
]);
Matrix.clone(A); // [[1, 2], [3, 4]]

column(A, index)

const A = new Matrix([
 [1, 2],
 [3, 4],
 [5, 6],
]);
Matrix.column(A, 0); // [[1], [3], [5]]
Matrix.column(A, 1); // [[2], [4], [6]]

diag(values)

Matrix.diag([1, 2, 3]); // [[1, 0, 0], [0, 2, 0], [0, 0, 3]]
const values = [
 new Matrix([
 [1, 2],
 [3, 4],
 ]),
 new Matrix([
 [5, 6],
 [7, 8],
 ])
];
Matrix.diag(values); // [[1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 5, 6], [0, 0, 7, 8]]

elementwise(A, cb)

Matrix.elementwise(A, (entry) => entry * 2); // element-wise multiplication
Matrix.elementwise(A, (entry) => entry ** 2); // element-wise power
Matrix.elementwise(A, (entry) => entry - 10); // element-wise subtraction

entry(row, col)

const A = new Matrix([
 [1, 2],
 [3, 4],
]);
A.entry(0, 0); // 1
A.entry(0, 1); // 2
A.entry(1, 0); // 3
A.entry(1, 1); // 4

flatten()

const matrix = new Matrix([
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9],
]);
const myArray = matrix.flatten(); // [1, 2, 3, 4, 5, 6, 7, 8, 9]

fromArray(arr, row, col)

const myArray = [1, 2, 3, 4, 5, 6, 7, 8];
const matrix = Matrix.fromArray(myArray, 2, 4); // [[1, 2, 3, 4], [5, 6, 7, 8]]

generate(row, col, cb)

Matrix.generate(3, 3, () => 0); // 3 x 3 zero matrix
Matrix.generate(3, 3, (i, j) => 1 / (i + j + 1)); // 3 x 3 Hilbert matrix
Matrix.generate(3, 3, (i, j) => i >= j ? 1 : 0); // 3 x 3 lower triangular matrix

getDiag(A)

const A = new Matrix([
 [1, 2, 3, 4],
 [5, 6, 7, 8],
]);
Matrix.getDiag(A); // [1, 6]

getRandomMatrix(row, col, min = 0, max = 1, toFixed = 0)

Matrix.getRandomMatrix(3, 4, -10, 10, 2); // 3 x 4 matrix which entries are bounded by -10 and 10 and has 2 decimal places

identity(size)

Matrix.identity(2); // 2 x 2 identity matrix
Matrix.identity(10); // 10 x 10 identity matrix

isEqual(A, B, digit = 5)

const A = new Matrix([
 [1, 2],
 [3, 4],
]);
const B = new Matrix([
 [1, 2],
 [3, 4 + 10e-10],
]);
Matrix.isEqual(A, B); // true
const C = new Matrix([
 [1, 2],
 [3, 4 + 10e-2],
]);
Matrix.isEqual(A, C); // false

row(A, index)

const A = new Matrix([
 [1, 2, 3],
 [4, 5, 6],
]);
Matrix.row(A, 0); // [[1, 2, 3]]
Matrix.row(A, 1); // [[4, 5, 6]]

submatrix(A, rowsExp, colsExp)

const A = new Matrix([
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9],
]);
Matrix.submatrix(A, 0, 1); // [[2]], row 0 & column 1
Matrix.submatrix(A, '0:1', 1); // [[1], [4]], row 0 + row 1 & column 1
Matrix.submatrix(A, '0:1', '0:1'); // [[1, 2], [4, 5]], row 0 + row 1 & column 0 + column 1
Matrix.submatrix(A, ':', '1:2'); // [[2, 3], [5, 6], [8,9]], all rows && column 1 + column 2
Matrix.submatrix(A, ':', ':'); // same with A

toString()

const A = new Matrix([
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9],
]);
A.toString(); // '1 2 3\n4 5 6\n7 8 9'
// 1 2 3
// 4 5 6
// 7 8 9

zero(row, col)

Matrix.zero(3, 4); // 3 x 4 zero matrix
Matrix.zero(10, 1); // 10 x 1 zero matrix

How to contribute

You are welcome to contribute by:

  • Reporting bugs
  • Fixing bugs
  • Adding new features
  • Improving performance
  • Improving code style of this library

License

MIT

About

A professional, comprehensive and high-performance library for you to manipulate matrices.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

AltStyle によって変換されたページ (->オリジナル) /