|
149 | 149 | ],
|
150 | 150 | "contributors": [],
|
151 | 151 | "code": "bool is_prime(int n) {\n if (n < 2) return false;\n if (n == 2 || n == 3) return true;\n if (n % 2 == 0) return false;\n for (int i = 3; i * i <= n; i += 2) {\n if (n % i == 0) return false;\n }\n return true;\n}\n\n// Usage:\nis_prime(29); // Returns: true\n"
|
| 152 | + }, |
| 153 | + { |
| 154 | + "title": "Sieve of Eratosthenes", |
| 155 | + "description": "Generate all prime numbers up to a given integer using the Sieve of Eratosthenes algorithm", |
| 156 | + "author": "dibyam-jalan27", |
| 157 | + "tags": [ |
| 158 | + "number", |
| 159 | + "prime" |
| 160 | + ], |
| 161 | + "contributors": [], |
| 162 | + "code": "#include <vector>\n\nusing namespace std;\n\nvector<int> sieve_of_eratosthenes(int n) {\n vector<bool> is_prime(n + 1, true);\n vector<int> primes;\n is_prime[0] = is_prime[1] = false;\n for (int i = 2; i * i <= n; ++i) {\n if (is_prime[i]) {\n for (int j = i * i; j <= n; j += i) {\n is_prime[j] = false;\n }\n }\n }\n for (int i = 2; i <= n; ++i) {\n if (is_prime[i]) {\n primes.push_back(i);\n }\n }\n return primes;\n}\n\n// Usage:\nsieve_of_eratosthenes(30); // Returns: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}\n" |
152 | 163 | }
|
153 | 164 | ]
|
154 | 165 | },
|
|
0 commit comments