|
| 1 | +// Ques 6 - Subsets ( Backtracking Algorithm using Recursion ) |
| 2 | +// Given an integer array nums of unique elements, return all possible subsets (the power set). |
| 3 | +// The solution set must not contain duplicate subsets. Return the solution in any order. |
| 4 | + |
| 5 | +// Input: [1,2,3] ----->>>>> Output: [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]] |
| 6 | +// Input: [0] ----->>>>> Output: [[],[0]] |
| 7 | + |
| 8 | +function subsets(nums) { |
| 9 | + let result = []; |
| 10 | + let temp = []; |
| 11 | + |
| 12 | + function recursiveSubsets(nums, i) { |
| 13 | + if (i === nums.length) { |
| 14 | + return result.push([...temp]); |
| 15 | + } |
| 16 | + |
| 17 | + temp.push(nums[i]); |
| 18 | + recursiveSubsets(nums, i + 1); |
| 19 | + temp.pop(); |
| 20 | + recursiveSubsets(nums, i + 1); |
| 21 | + } |
| 22 | + |
| 23 | + recursiveSubsets(nums, 0); |
| 24 | + return result; |
| 25 | +} |
| 26 | + |
| 27 | +console.log(subsets([1])); |
0 commit comments