Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

BUG: pd.read_sql is incorrectly reading long int when connecting to Teradata #61667

Open
Labels
Bug IO SQLto_sql, read_sql, read_sql_query Needs TriageIssue that has not been reviewed by a pandas team member
@IzidoroBaltazar

Description

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np
query = """
SELECT
 longID
FROM teradata_table
WHERE
longID = 305184080441754059;
"""
dtype = {
 "QueryID": np.uint64,
}
with teradatasql.connect(
 host=HOST, user=USERNAME, password=PASSWORD, logmech="LDAP"
) as connect:
 df = pd.read_sql(query, connect, dtype=dtype)
df.head()
# pandas returns longID 305184080441754048 - close but not quite 305184080441754059

Issue Description

We have trouble when pulling long longID with 18 digits pandas are incorrectly reading the Teradata value. I also tried using cast(longID as decimal(18, 0)) to help Pandas understand the type of longID. So far I haven't found a solution how to fix the problem - incorrect value read.
We are using teradatasql version 20.0.0.24 we can confirm that teradatasql is working correctly as it gives us the value below when using query specified above: Decimal('305184080441754059')

with teradatasql.connect(
 host=HOST, user=USERNAME, password=PASSWORD, logmech="LDAP"
) as con:
 with con.cursor() as cur: 
 cur.execute(query)
 for row in cur:
 print(f"{row}")

^ this works as expected - so we assume that Teradata SQL library is working correctly.

Expected Behavior

We expect to see 305184080441754059 as longID in the pandas dataframe.

Installed Versions

INSTALLED VERSIONS ------------------ commit : 2cc3762 python : 3.12.9 python-bits : 64 OS : Linux OS-release : 4.18.0-477.15.1.el8_8.x86_64 Version : #1 SMP Thu Jul 20 11:31:48 PDT 2023 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : en_US.UTF-8 LANG : en_US.UTF-8 LOCALE : en_US.UTF-8

pandas : 2.3.0
numpy : 1.26.4
pytz : 2025.1
dateutil : 2.9.0.post0
pip : 25.0.1
Cython : None
sphinx : None
IPython : 8.32.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : 2024110
fsspec : 2025年5月1日
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.5
lxml.etree : 5.4.0
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.5
pandas_gbq : None
psycopg2 : 2.9.10
pymysql : None
pyarrow : 20.0.0
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.15.3
sqlalchemy : 2.0.38
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : 0.23.0
tzdata : 2025.2
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Bug IO SQLto_sql, read_sql, read_sql_query Needs TriageIssue that has not been reviewed by a pandas team member

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /